Внешнее дыхание и оценка физической работоспособности

Дыхание — это единый процесс, осуществляемый целостным организмом и состоящий из трех неразрывных звеньев: а) внешнего дыхания, то есть газообмена между внешней средой и кровью легочных капилляров; б) переноса газов, осуществляемого системами кровообращения; в) внутреннего дыхания, то есть газообмена между кровью и клеткой, в процессе которого клетки потребляют кислород и выделяют углекислоту. Основу тканевого дыхания составляют сложные окислительно-восстановительные реакции, сопровождающиеся освобождением энергии, которая необходима для жизнедеятельности организма.

Работоспособность человека определяется в основном тем, какое количество кислорода забрано из наружного воздуха в кровь легочных капилляров и доставлено в ткани и клетки. Указанные выше три системы дыхания тесно связаны между собой и обладают взаимной компенсацией. Так, при сердечной недостаточности наступает одышка, при недостатке О2 в атмосферном воздухе увеличивается количество эритроцитов — переносчиков кислорода, при заболеваниях легких наступает тахикардия.

Система внешнего дыхания состоит из легких, верхних дыхательных путей и бронхов, грудной клетки и дыхательных мышц.

Внешнее дыхание обеспечивает обмен газов между альвеолярным воздухом и кровью легочных капилляров, то есть насыщение венозной крови кислородом и освобождение ее от избытка углекислоты, что свидетельствует о взаимосвязи функции внешнего дыхания с регуляцией кислотно-щелочного равновесия. В физиологии дыхания функцию внешнего дыхания разделяют на три основных процесса — вентиляцию, диффузию и перфузию.

Под вентиляцией следует понимать обмен газа между альвеолярным и атмосферным воздухом. От уровня альвеолярной вентиляции зависит постоянство газового состава альвеолярного воздуха.

Альвеолярная вентиляция равна разности между объемом дыхания в минуту и объемом «мертвого» пространства, умноженной на число дыханий в минуту. Объем вентиляции зависит прежде всего от потребности организма в кислороде при выведении определенного количества углекислого газа, а также от состояния дыхательных мышц, проходимости бронхов и пр.

Не весь вдыхаемый воздух достигает альвеолярного пространства, где происходит газообмен. Если объем вдыхаемого воздуха равен 500 мл, то 150 мл остается в «мертвом» пространстве, и за минуту через дыхательную зону легких в среднем проходит 15 = 5250 мл атмосферного воздуха. Эта величина называется альвеолярной вентиляцией. «Мертвое» пространство возрастает при глубоком вдохе, его объем зависит также от массы тела и позы обследуемого,

Диффузия — это процесс пассивного перехода кислорода из легких через альвеолярно-капиллярную мембрану в гемоглобин легочных капилляров, с которыми кислород вступает в химическую реакцию.

Перфузия легких кровью по сосудам малого круга. Об эффективности работы легких судят по соотношению между вентиляцией и перфузией. Указанное соотношение определяется числом вентилируемых альвеол, которые соприкасаются с хорошо перфузируемыми капиллярами. При спокойном дыхании у человека верхние отделы легкого расправляются полнее, чем нижние. При вертикальном положении тела нижние отделы перфузируются кровью лучше, чем верхние.

Легочная вентиляция повышается параллельно увеличению потребления кислорода, причем при максимальных нагрузках у тренированных лиц она может возрастать в 20—25 раз по сравнению с состоянием покоя и достигать 150 л/мин и более. Такое увеличение вентиляции обеспечивается возрастанием частоты и объема дыхания, причем частота может увеличиться до 60—70 дыханий в минуту, а дыхательный объем — с 15 до 50% жизненной емкости легких.

В возникновении гипервентиляции при физических нагрузках важную роль играет раздражение дыхательного центра в результате высокой концентрации углекислого газа и водородных ионов при высоком уровне молочной кислоты в крови.

Гипервентиляция, вызываемая физическими нагрузками, всегда ниже максимальной вентиляции, и увеличение диффузной способности кислорода в легких во время работы также не является предельным. Поэтому, если отсутствует легочная патология, дыхание не ограничивает мышечную работу.

Важный показатель — потребление кислорода — отражает функциональное состояние кардиореспираторной системы. Существует связь между факторами циркуляции и дыхания, влияющими на объем потребляемого кислорода.

Во время физических нагрузок потребление кислорода значительно увеличивается. Это предъявляет повышенные требования к функции сердечно-сосудистой и дыхательной систем. Поэтому кардиореспираторная система при мышечной работе подвержена изменениям, которые зависят от интенсивности физических нагрузок.

Исследование функции внешнего дыхания в спорте позволяет наряду с системами кровообращения и крови оценить функциональное состояние спортсмена и его резервные возможности.

Исследование начинают со сбора анамнеза, затем переходят к осмотру, перкуссии и аускультации.

Осмотр позволяет определить тип дыхания, установить наличие или отсутствие одышки и т.п. Определяют три типа дыхания: грудной, брюшной и смешанный. При грудном типе дыхания на вдохе заметно поднимаются ключицы и происходит движение ребер. При этом типе дыхания объем легких возрастает главным образом за счет движения верхних и нижних ребер. При брюшном типе дыхания увеличение объема легких происходит в основном за счет движения диафрагмы — на вдохе она опускается вниз, несколько смещая органы брюшной полости. Поэтому стенка живота на вдохе при брюшном типе дыхания слегка выпячивается. У спортсменов, как правило, смешанный тип дыхания, где участвуют оба механизма увеличения объема грудной клетки.

Перкуссия позволяет определить изменение плотности легких. Изменения в легких являются обычно следствием некоторых заболеваний.

Аускультация определяет состояние воздухоносных путей. При различных заболеваниях органов дыхания прослушиваются весьма характерные звуки — различные хрипы, усиление или ослабление дыхательного шума и т.д.

Исследование внешнего дыхания проводят по показателям, характеризующим вентиляцию, газообмен, содержание и парциальное давление кислорода и углекислого газа в артериальной крови и по другим параметрам.

Для исследования функции внешнего дыхания пользуются спирометрами, спирографами и специальными аппаратами открытого и закрытого типа. Наиболее удобно спирографическое исследование, при котором на движущейся бумажной ленте записывается кривая — спирограмма. По этой кривой, зная масштаб шкалы аппарата и скорость движения бумаги, определяют следующие показатели легочной вентиляции: частоту дыхания, дыхательный объем, минутный объем дыхания, жизненную емкость легких, максимальную вентиляцию легких, остаточный объем легких, общую емкость легких. Кроме того, исследуется сила дыхательной мускулатуры, бронхиальная проходимость и др.

Легочная вентиляция связана с функцией дыхательных мышц. Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движениями частей грудной клетки и диафрагмы. Дыхательные мышцы — это те мышцы, сокращение которых изменяет объем грудной клетки.

Вдох создается расширением грудной клетки и всегда является активным процессом. Обычно главную роль во вдохе играет диафрагма. При усиленном вдохе сокращаются дополнительные группы мышц.

Выдох в покое происходит пассивно вследствие постепенного снижения активности мышц, создающих условия для вдоха. Расслабление связанных с дыханием мышц придает грудной клетке положение пассивного выдоха. При усиленном выдохе в дополнение к другим мышечным группам действуют внутренние межреберные мышцы, а также брюшные мышцы.

Объем легких при вдохе не всегда одинаков. Объем воздуха, вдыхаемый при обычном вдохе и выдыхаемый при обычном выдохе, называется дыхательным воздухом.

Остаточный воздух — объем воздуха, оставшийся в не возвратившихся в исходное положение легких.

Частота дыхания — количество дыханий в 1 мин. Определение ЧД производят по спирограмме или по движению грудной клетки. Средняя частота дыхания у здоровых лиц — 16—18 в минуту, у спортсменов — 8—12. В условиях максимальной нагрузки ЧД возрастает до 40—60 в 1 мин.

Глубина дыхания — объем воздуха спокойного вдоха или выдоха при одном дыхательном цикле. Глубина дыхания зависит от роста, веса, пола и функционального состояния спортсмена. У здоровых лиц ДО составляет 300-800 мл.

Минутный объем дыхания характеризует функцию внешнего дыхания.

В спокойном состоянии воздух в трахее, бронхах, бронхиолах и в неперфузируемых альвеолах в газообмене не участвует, так как не приходит в соприкосновение с активным легочным кровотоком — это так называемое «мертвое» пространство.

Часть дыхательного объема, которая участвует в газообмене с легочной кровью, называется альвеолярным объемом. С физиологической точки зрения альвеолярная вентиляция — наиболее существенная часть наружного дыхания, так как она является тем объемом вдыхаемого за 1 мин воздуха, который обменивается газами с кровью легочных капилляров.

МОД измеряется произведением ЧД на ДО. У здоровых лиц ЧД — 16-18 в минуту, а ДО колеблется в пределах 350-750 мл, у спортсменов ЧД — 8-12, а ДО — 900-1300 мл. Увеличение МОД наблюдается вследствие возбуждения дыхательного центра, затруднения диффузии кислорода и др.

В покое МОД составляет 5-6 л, при напряженной физической нагрузке может возрастать в 20—25 раз и достигать 120—150 л в 1 мин и более. Увеличение МОД находится в прямой зависимости от мощности выполняемой работы, но только до определенного момента, после которого рост нагрузки уже не сопровождается увеличением МОД. Даже при самой тяжелой нагрузке МОД никогда не превышает 70-80% уровня максимальной вентиляции. Расчет должной величины МОД основан на том, что у здоровых лиц из каждого литра провентилированного воздуха поглощается примерно 40 мл кислорода.

Вентиляционным эквивалентом называется соотношение между МОД и величиной потребления кислорода. В состоянии покоя 1 л кислорода в легких поглощается из 20—25 л воздуха. При тяжелой физической нагрузке вентиляционный эквивалент увеличивается и достигает 30—35 л. Под влиянием тренировки на выносливость вентиляционный эквивалент при стандартной нагрузке уменьшается. Это свидетельствует о более экономном дыхании у тренированных лиц. С возрастом ВЭ при данной нагрузке увеличивается. Восстановление МОД после нагрузки у тренированных лиц происходит быстрее.

Жизненная емкость легких состоит из дыхательного объема, резервного объема вдоха и резервного объема выдоха. ЖЕЛ зависит от пола, возраста, размера тела и тренированности. ЖЕЛ составляет в среднем у женщин 2,5—4 л, у мужчин — 3,5—5 л. Под влиянием тренировки ЖЕЛ возрастает, у хорошо тренированных спортсменов она достигает 8 л.

Абсолютные значения ЖЕЛ мало показательны из-за индивидуальных колебаний. При оценке состояния обследуемого рекомендуется рассчитывать «должные» величины.

Для расчета ДЖЕЛ используют формулу Anthony и Vernath, в основу которой положена величина основного обмена. Ее находят по таблицам Гаррис—Бенедикта соответственно полу, возрасту и массе тела. ДЖЕЛ = величина основного обмена х к, где к — коэффициент: 2,3 у женщин, 2,6 — у мужчин. Величину основного обмена определяем по таблицам Гаррис—Бенедикта, где находят фактор роста и фактор веса. Сумма А + Б и есть должная величина основного обмена. Должный основной обмен, как и ЖЕЛ, зависит от пола, возраста, роста и веса, легко определяется по специальным таблицам и выражается в килокалориях.

Таким образом, МВЛ наиболее точно и полно характеризует функцию внешнего дыхания в сравнении с другими спирогра-фическими показателями.

Для оценки бронхиальной проходимости используют тест ФЖЕЛ. Обследуемому предлагают максимально глубоко вдохнуть и быстро выдохнуть. ФЖЕЛ у здоровых лиц ниже ЖЕЛ на 200—300 мл. Тиффно предложил измерять ФЖЕЛ за первую секунду. В норме ФЖЕЛ за секунду составляет не менее 70% ЖЕЛ.

Пневмотахометрия проводится пневмотахометром Б.Е. Вотчала. Методом пневмотахометрии определяют скорость воздушной струи при максимально быстром вдохе и выдохе. У здоровых лиц этот показатель колеблется у мужчин от 5 л/сек до 8 л/сек, у женщин — от 4 л/сек до 6 л/сек. Отмечена зависимость пневмо-тахометрического показателя от ЖЕЛ и возраста. Обнаружено, что, чем больше ЖЕЛ, тем выше максимальная скорость выдоха. Пневмотахометрический показатель зависит от бронхиальной проходимости, силы дыхательной мускулатуры спортсмена, его возраста, пола и функционального состояния.

Величину максимальной скорости выдоха сравнивают с должными величинами, рассчитанными по формуле: должная величина выдоха = ЖЕЛ  1,2. Разница фактической и должной величину здоровых людей не должна превышать 15% должного уровня. У здоровых лиц показатель выдоха больше показателя вдоха. С повышением тренированности отмечается преобладание максимальной скорости вдоха над выдохом. Увеличение скорости вдоха у спортсменов объясняется повышением резервных возможностей легких.

Объем воздуха, остающегося в легких после максимального выдоха, наиболее полно и точно характеризует газообмен в легких.

Одним из основных показателей внешнего дыхания является газообмен углекислоты и кислорода в альвеолярном воздухе, то есть поглощение кислорода и выведение углекислоты. Газообмен характеризует внешнее дыхание на этапе «альвеолярный воздух — кровь легочных капилляров». Он исследуется методом газовой хроматографии.

Функциональная проба Розенталя позволяет судить о функциональных возможностях дыхательной мускулатуры. Проба проводится на спирометре, где у обследуемого 4—5 раз подряд с интервалом в 10—15 с определяют ЖЕЛ. В норме получают одинаковые показатели. Снижение ЖЕЛ на протяжении исследования указывает на утомляемость дыхательных мышц.

Пневмотонометрический показатель дает возможность оценить силу дыхательной мускулатуры, которая является основой процесса вентиляции. ПТП снижается при гиподинамии, при длительных перерывах в тренировках, при переутомлении и др. Исследование проводится пневмотонометром В.И. Дубровского и И.И. Дерябина. Исследуемый производит выдох в мундштук аппарата. В норме у здоровых лиц ПТП в среднем составляет у мужчин на выдохе мм рт. ст., на вдохе — мм рт. ст., у женщин, соответственно, — мм рт. ст. и мм рт. ст. При заболеваниях легких, гиподинамии, переутомлении эти показатели снижаются.

При физических нагрузках, особенно в циклических видах спорта дыхательная мускулатура является лимитирующим фактором.

Общая емкость легких во время нагрузки может несколько уменьшаться из-за увеличения внутриторакального объема крови. В состоянии покоя дыхательный объем составляет 10—15 ЖЕЛ, при физической нагрузке может достигать 50% ЖЕЛ. Таким образом, у людей с большой ЖЕЛ дыхательный объем в условиях интенсивной физической работы может составлять 3—4 л. Как видно на рис. 50, ДО увеличивается главным образом за счет резервного объема вдоха. Резервный объем выдоха даже при тяжелой физической нагрузке изменяется незначительно. Поскольку во время физической работы остаточный объем увеличивается, а функциональная остаточная емкость практически не изменяется, ЖЕЛ несколько уменьшается.

Пробы Штанге и Генчи дают некоторое представление о способности организма противостоять недостатку кислорода.

Проба Штанге. Измеряется максимальное время задержки дыхания после глубокого вдоха. При этом рот должен быть закрыт и нос зажат пальцами. Здоровые люди задерживают дыхание в среднем на 40—50 с; спортсмены высокой квалификации — до 5 мин, а спортсменки — от 1,5 мин до 2,5 мин.

С улучшением физической подготовленности в результате адаптации к двигательной гипоксии время задержки нарастает. Следовательно, увеличение этого показателя при повторном обследовании расценивается как улучшение подготовленности спортсмена.

Проба Генчи. После неглубокого вдоха сделать выдох и задержать дыхание. У здоровых людей время задержки дыхания составляет 25—30 с. Спортсмены способны задержать дыхание на 60—90 с. При хроническом утомлении время задержки дыхания резко уменьшается.

Значение проб Штанге и Генчи увеличивается, если вести наблюдение постоянно, в динамике.

Исследование диффузной способности легких. Для оценки второго этапа функции внешнего дыхания — газообмена между альвеолярным воздухом и кровью легочных капилляров важно определить количество поглощенного кислорода и выделенной углекислоты.

Как уже было сказано, здоровые люди из каждого литра провентилированного воздуха поглощают примерно 40 мл кислорода.

В атмосферном воздухе содержится 20,93% кислорода, 0,02— 0,03% углекислого газа.

Функция внешнего дыхания изучается с помощью аппаратов закрытого и открытого типа.

Аппараты закрытого типа — спирографы. Испытуемый вдыхает воздух из аппарата и выдыхает его туда же, то есть дыхательные пути и аппарат составляют замкнутую систему. На движущейся бумажной ленте регистрируется кривая записи дыхания — спирограмма. По ней определяют ЧД, МВЛ, МОД, ЖЕЛ, ФЖЕЛ и др.

Открытый способ исследования: испытуемый вдыхает атмосферный воздух и выдыхает его в мешок Дугласа или газовый счетчик, определяющий объем выдыхаемого воздуха. Анализ пробы выдыхаемого воздуха в газоанализаторе позволяет определить процент поглощения кислорода и выделения углекислого газа.

Современные приборы позволяют изучать поглощение кислорода и выделение углекислоты не только в покое, но и при физической нагрузке, что дает дополнительную информацию о функции легких. Вентиляция и легочный кровоток, перенос кислорода и углекислого газа, диффузная способность при нагрузке могут возрастать в несколько раз. Для регулируемой нагрузки.используют тредмилл, велоэргометр, степ-тест и др.

Транспортировка газов кровью. Величина рН. Вентиляция легких тесно связана с образованием углекислого газа в организме. В условиях интенсивной нагрузки ее рост вызывается анаэробиозом работающих мышц и усиленным раздражением дыхательного центра.

Диффузную способность легких характеризует так называемая диффузная емкость, то есть количество газов, диффундиру-ющих между альвеолами и легочными капиллярами, которое выражается в миллилитрах в единицу времени на каждую единицу разности парциального давления. В состоянии покоя диффузная емкость по кислороду колеблется в пределах 20—30 мл/мин/мм рт. ст. При физической нагрузке емкость возрастает пропорционально потреблению кислорода. У хорошо тренированных спортсменов с аэробной мощностью в 5 л/мин диффузная емкость легких по кислороду достигает 75 мл/мин/мм рт. ст.

Основное значение для переноса газов кровью имеет гемоглобин. В костном мозге взрослого человека за 24 часа, параллельно образованию эритроцитов для 40—50 мл крови, синтезируется в среднем около 6,75 гемоглобина. Общее количество гемоглобина в крови взрослого человека зависит от его концентрации и общего объема крови. В среднем концентрация НЬ у взрослых женщин составляет 139 г/л, а у мужчин 158 г/л крови. Общее количество крови зависит от размеров тела человека, и в среднем составляет у женщин 59—74,3 мл/кг, а у мужчин — 69,1—77,7 мл/кг. Под воздействием физических упражнений объем крови увеличивается и достигает 88 мл/кг. Таким образом, у женщин с концентрацией гемоглобина 145 г/л и объемом крови 4 л общее количество гемоглобина равно 580 г, у стайера — 9454 г. Отмечено, что общее количество НЬ тесно коррелирует с максимумом потребления кислорода.

Транспортировка кислорода зависит от диффузии этого газа из капиллярной крови в митохондрии клеток ткани. Скорость тканевой диффузии определяется парциальным давлением кислорода в капиллярной крови и расстоянием между капиллярами.

Скорость перемещения кислорода увеличивается за счет интенсификации кровотока — «резерв кровотока». Содержание кислорода в крови может быть несколько увеличено гипервентиляцией, то есть вдыханием кислорода или гипербарических смесей — «дыхательный резерв».

В условиях физической нагрузки в результате понижения рН и увеличения температуры крови кривая диссоциации окси-гемоглобина смещается вправо. Таким образом сохраняется адекватный градиент кислорода и увеличивается десатурация окси-гемоглобина при данном парциальном давлении кислорода.

Одновременно в первые 10—15 мин нагрузки субмаксимальной мощности происходит некоторая гемоконцентрация и повышение содержания НЬ. Это обусловлено выходом определенного количества плазмы из сосудистого русла, вызванное увеличением артериального и осмотического давления в мышечной ткани, а также увеличением площади капиллярной поверхности.

При физической нагрузке увеличение легочной вентиляции обеспечивает нормальное или повышенное парциальное давление кислорода в альвеолах. Парциальное давление кислорода в артериальной крови меняется мало, а при тяжелой нагрузке может даже несколько уменьшаться. Реакция артериальной крови зависит от парциального давления углекислого газа и показателя стандартбикарбоната. В нормальных условиях в состоянии покоя рН крови колеблется около 7,4. Парциальное давление углекислого газа в условиях умеренной нагрузки у здорового человека также изменяется мало. Тяжелая физическая нагрузка может вызвать более выраженные сдвиги этого показателя. При увеличении интенсивности нагрузки в мышцах начинается анаэробиоз с образованием молочной кислоты и снижением рН. Сдвиги этих показателей зависят от физической готовности обследуемого, а также от типа и мощности выполняемой нагрузки.

При тяжелой физической работе рН артериальной крови снижается в связи с выделением молочной кислоты в процессе анаэробного гликолиза. Снижение рН артериальной крови усиливает вентиляцию крови.

При максимальной велоэргометрической нагрузке в венозной крови, оттекающей от работающих мышц, обнаруживаются сдвиги: рН — 6,99; парциальное давление углекислого газа — 78 мм рт. ст., парциальное давление кислорода — 10 мм рт. ст..

Потребление кислорода и кислородный долг. В состоянии покоя средний расход энергии человека составляет примерно 1,25 ккал/мин, то есть 250 мл кислорода в минуту. Эта величина варьируется в зависимости от размеров тела обследуемого, его пола и условий окружающей среды. При физической нагрузке расход энергии может увеличиваться в 15—20 раз.

При спокойном дыхании взрослые молодые люди затрачивают около 20% общего расхода энергии. Для перемещения воздуха в легкие и из них требуется меньше 5% общего потребления кислорода. Работа дыхательной мускулатуры и затрата энергии на дыхание с увеличением вентиляции легких растут в большей степени, чем минутный объем дыхания.

Известно, что работа дыхательных мышц идет на преодоление сопротивления воздушному потоку в дыхательных путях и эластического сопротивления легочной ткани и грудной клетки. Наблюдения показывают, что эластичность меняется также в связи с кровенаполнением легких. Тренировка увеличивает число капилляров в легких, не отражаясь заметно на альвеолярной ткани.

При физических нагрузках вентиляция легких, вентиляционный эквивалент, ЧСС, кислородный пульс, артериальное давление и другие параметры изменяются в прямой зависимости от интенсивности нагрузки или степени ее прироста, возраста спортсмена, его пола и тренированности.

При больших физических нагрузках выполнять работу за счет только аэробных механизмов энергопродукции способны лица с очень хорошим функциональным состоянием.

После завершения нагрузки потребление кислорода постепенно снижается и возвращается к исходному уровню. Количество кислорода, которое в восстановительном периоде потребляется сверх уровня основного обмена, называется кислородным долгом. Кислородный долг погашается четырьмя путями:

1) аэробное устранение анаэробного метаболизма;

2) увеличение потребления кислорода мышцей сердца и дыхательной мускулатурой;

3) увеличение потребления кислорода тканями в зависимости от временного повышения температуры и содержания в них катехоламинов;

4) пополнение кислородом миоглобина.

Размер кислородного долга по окончании работы зависит от величины усилия и тренированности обследуемого. При максимальной нагрузке длительностью 1—2 мин у нетренированного человека может образоваться кислородный долг в 3—5 л, у спортсмена высокой квалификации — 15 л и более. Максимум кислородного долга является мерой так называемой анаэробной мощности. Кислородный долг характеризует общую емкость анаэробных процессов, то есть суммарное количество работы, совершаемое при максимальном усилии.

Доля анаэробной энергопродукции отражается в концентрации молочной кислоты в крови. Молочная кислота образуется непосредственно в мышцах во время нагрузки, однако необходимо некоторое время, пока она диффундирует в кровь. Поэтому наибольшая концентрация молочной кислоты в крови обычно наблюдается на 3—9 минуте восстановительного периода. Наличие молочной кислоты снижает рН крови. После выполнения тяжелых нагрузок наблюдается снижение рН до 7,0.

У людей 20—40-летнего возраста со средней физической подготовленностью она колеблется в пределах от 11 ммоль/л до 14 ммоль/л. У детей и пожилых людей она обычно ниже. В результате тренировок концентрация молочной кислоты при стандартной нагрузке повышается меньше. Однако у высокотренированных спортсменов после максимальной физической нагрузки молочная кислота иногда превышает 20 ммоль/л. В состоянии мышечного покоя концентрация молочной кислоты в артериальной крови колеблется в пределах 0,33—1,1 ммоль/л. У спортсменов в связи с адаптацией кардиореспираторной системы к физическим нагрузкам дефицит кислорода в начале работы меньше.

Порог анаэробного обмена. Для аэробного окисления субстрата до воды и углекислого газа при физической нагрузке необходимы следующие условия: 1) достаточная плотность митохондрий в мышечных волокнах сократительных единиц, которая позволяет удовлетворять требованиям ресинтеза АТФ аэробным путем; 2) промежуточные продукты обмена и ферменты, не лимитирующие скорость метаболических реакций в цикле Кребса при данной нагрузке; 3) достаточная доставка кислорода к цепи транспорта электронов в митохондриях.

Если аэробная деструкция субстрата лимитируется одним или несколькими из этих факторов, то начинается анаэробный метаболизм, который поддерживает необходимую скорость продукции АТФ. Момент включения механизмов анаэробной энергопродукции при мышечной нагрузке зависит от разных обстоятельств, среди которых главное место занимает физическая подготовленность индивидуума. Так, мощность нагрузки при работе с возрастающей интенсивностью, когда анаэробные процессы начинают улавливаться лабораторными методами, обозначается как порог анаэробного обмена. Она выражается в единицах мощности работы или в процентах потребления кислорода от максимума аэробной мощности.

Квалифицированные спортсмены могут выполнять нагрузки выше ПАНО1 без существенного дальнейшего прироста молочной кислоты.

ПАНО2 обозначается как начало заметного отклонения концентрации молочной кислоты, показателей внешнего дыхания, кислотно-основного состояния крови, свидетельствующих о коренной перестройке регуляторных функций и энергообеспечения мышечной деятельности.

Исследования изменений биохимических и газометрических показателей у спортсменов во время ступенеобразно повышающейся нагрузки выделяют три фазы.

В таблице показаны трехфазный характер изменений концентрации молочной кислоты, доминирующие источники энергии и рекрутированные мышечные волокна в каждой фазе аэробно-анаэробного перехода.

В первой фазе по мере возрастания нагрузки увеличивается утилизация кислорода в работающих мышцах. При интенсивной нагрузке концентрация молочной кислоты начинает незначительно увеличиваться, поэтому первую фазу можно обозначить как аэробную.

Во второй фазе при повышении нагрузки до 40—65% МПК и ЧСС до 150-170 уд/мин потребление кислорода и ЧСС продолжают линейно расти, увеличивается вентиляция легких. Эту фазу можно обозначить как период изокапнического буферирования с достаточно эффективной респираторной компенсацией.

В третьей фазе, при дальнейшем возрастании мощности нагрузки, начинается усиленное выделение молочной кислоты, концентрация ее в среднем превышает 4 ммоль/л, что приводит к заметному снижению рН крови и концентрации гидрогенкарбонатных ионов.

Значение границ аэробно-анаэробного перехода зависит от специализации и тренированности спортсмена.

Исследования показывают, что у нетренированных людей порог аэробного обмена находится на уровне 40—45%, у тренированных людей — 55—60% и у спортсменов экстракласса, тренирующихся в циклических видах спорта, — около 70% максимума потребления кислорода. Практически это означает, что спортсмен, имеющий более высокий ПАНОд, может поддерживать на дистанции более высокий темп без значительного накопления в организме продуктов анаэробного обмена.

Максимальное потребление кислорода и уровень ПАНО зависят от режима тренировок. Эти два параметра могут изменяться независимо друг от друга и обнаруживают большую индивидуальную вариабельность.

В табл. 32 приведены средние значения параметров ПАНО1 и ПАНО2 у нетренированных людей и спортсменов.

Возможность поддержания дистанционной скорости, в конечном счете определяющей спортивный результат, зависит не столько от аэробной мощности, сколько от степени изменения кислотно-основного состояния в организме спортсмена.

Роль дыхания в поддержании кислотно-щелочного равновесия

Термин «кислотно-щелочное равновесие» отражает способность к поддержанию постоянства концентрации водородных ионов в жидкостях организма. Кислотность обычно выражается показателем концентрации водородных ионов, или рН. Чем выше кислотность, тем меньше рН. Если рН больше 7, то раствор щелочной.

Большинство процессов в организме протекает при реакции среды, близкой к нейтральной. Поддержание такой реакции обеспечивается целой системой буферов, то есть веществ, препятствующих значительным сдвигам рН при добавлении в среду сильных кислот или оснований.

Буферы представляют собой смесь слабой кислоты и основания или соли. Основные буферы крови и тканей следующие: гемоглобиновый буфер, белки плазмы крови, фосфатный буфер, бикарбонатный буфер. В буферных системах происходит замена сильной кислоты на слабую, при диссоциации которой образуется меньше водородных ионов и, следовательно, рН раствора снижается в меньшей степени.

Молочная кислота буферируется, или нейтрализуется, бикарбонатом и защищается угольной кислотой.

Транспортировка углекислоты оказывает сильное влияние на КЩР циркулирующей крови и, соответственно, всего организма.

Изменение рН, наступающее при повышении или понижении содержания углекислоты в крови, обозначается как «дыхательное». Если же изменяется концентрация бикарбонатов, то происходящее при этом изменение рН называют «метаболическим». Возможна компенсация дыхательного ацидоза метаболическим алкалозом.

При интенсивных физических нагрузках, как правило, наблюдается метаболический ацидоз различной степени выраженности. Его причиной является «закисление» крови, то есть накопление в крови метаболитов обмена веществ. С ростом тренированности отмечаются меньшие сдвиги рН и других показателей кислотно-щелочно-J уо состояния.

Проницаемость, всасывание, транспортировка и выделение различных веществ в организме зависят от степени ионизации и диссоциации, которые в свою очередь определяются значением рН и температурой окружающей среды.

Более 90% углекислоты, переносимой кровью, находится в химически связанном состоянии, остальная часть растворена в плазме. Химическими формами транспортировки углекислоты являются ион бикарбоната и аминогруппы белков крови, например глобина в составе гемоглобина.

В регуляции КЩР участвуют почки, которые получают около 20—25% крови — больше на единицу веса, чем любой другой из основных органов. Почки удаляют из плазмы конечные продукты обмена, контролируют обмен в организме и в плазме электролитов, способствуют регуляции рН организма. Они также контролируют количество воды в плазме и других средах и этим поддерживают постоянство внутренней жидкой среды.

Кроме того, почки продуцируют два вида гормонов, которые воздействуют на клетки и изменяют физиологические процессы во всем организме.

Пулъмофонография. У человека в состоянии покоя в акте дыхания заняты преимущественно периферические участки легкого, центральная часть, расположенная у корня, менее растяжима. Часть альвеол не вентилируется, и часть легочных капилляров закрыта. Для прохождения крови используются в основном те капилляры, которые находятся в достаточно хорошо вентилируемых участках. Кровоснабжение разных участков легкого зависит от их функционального состояния. Иными словами, кровоток осуществляется главным образом через капилляры вентилируемых альвеол, в выключенных же из вентиляции участках легких кровоток резко снижен.

Локальную вентиляцию легких исследуют в исходном состоянии сидя или лежа с помощью аппарата «Пульмофон-3» ВНИИМПа. В процессе дыхания в верхние дыхательные пути пациента по резиновому шлангу с загубником подают звуковой сигнал с частотой 80 Гц. При этом на поверхности грудной клетки располагают парные микрофоны диаметром 2,5 см. Запись пульмофонограмм производится в 20 симметричных точках: 4 пары точек на спине, 4 пары точек на поверхности груди и 2 пары точек на боковых поверхностях грудной клетки. Звуковые колебания проходят по трахео-бронхиальному дереву и легочной ткани до наружной поверхности грудной клетки, где измененный сигнал воспринимается микрофонами и графически регистрируется в виде кривых — пульмофонограмм — на ленте самописца, по которым строятся гистограммы.

В норме основную массу легочного объема составляют нормовентилируемые участки легких, 3,5% — гиповентилируемые, 24% — гипервентилируемые участки в правом легком и, соответственно, 73,0, 7,5 и 19,5% — в левом легком.

После массажа и оксигенотерапии показатели локальной вентиляции легких заметно улучшаются за счет их нормо-вентилируемых и гиповентилируемых участков. Средства реабилитации способствуют нормализации функции легочной вентиляции и насыщения артериальной крови кислородом. Массаж грудной клетки приводит к перераспределению крови и более равномерному кровоснабжению всех отделов легких.

    Banner Akad_Zaharkin_Novosib Banner IdealScout Banner SportExpert banner altayvitaminy ArtHockey Banner_Sakhalin

Все права защищены. Любое использование материалов сайта допускается только с разрешения правообладателя. За получением разрешения на использование обращаться по адресу E-Mail Image При любом использовании материалов ссылка на сайт lifeinhockey.ru обязательна ©