Исследование функционального состояния системы внешнего дыхания. Часть 1 

Исследование системы внешнего дыхания представляет важный раздел изучения функционального состояния организма в целом. В условиях спортивной деятельности к аппарату внешнего дыхания предъявляют высокие требования, реализация которых обеспечивает эффективную работу всей кардиореспираторной системы.

Исследование органов дыхания ведется по общепринятой клинической методике: расспрос, осмотр, перкуссия, аускультация и использование инструментальных методов исследования.

При врачебном исследовании определяют тип, частоту, глубину и ритм дыхания.

Частота дыхания. У взрослого человека в покое число дыхательных движений в минуту колеблется от 12 до 20. Частота дыхания меняется от ряда причин: в спокойном состоянии дыхание реже, а при движении, физических упражнениях - чаще. Дыхание учащается при повышении температуры окружающей среды, температуры тела, во время и после еды, при волнении. Оно меняется в зависимости от положения тела; реже - в положении лежа, чаще - в положении стоя. У женщин дыхание чаще на 2-4 в минуту, чем у мужчин. У детей дыхание значительно чаще, чем у взрослых.

Количество вдыхаемого и выдыхаемого воздуха зависит от глубины и частоты дыхания. При всяком напряжении, особенно физическом, эта величина становится в несколько раз больше. Подсчет дыхательных движений производится прикладыванием кисти руки на границу грудной клетки в эпигастральной области. При этом необходимо отвлечь внимание обследуемого и определить частоту дыхания незаметно, иначе обследуемый невольно начинает дышать чаще или реже обычного и неравномерно.

В покое у спортсменов количество дыхательных движений снижается и составляет 12-14, а иногда и 8 дыханий в минуту.

На развитие грудной клетки оказывает влияние регулярность занятий физической культурой и спортом. Экскурсия грудной клетки и сила дыхательных мышц в определенной степени зависит от вида спорта. Подвижность грудной клетки оказывается наибольшей у лиц, тренирующихся в тех видах спорта, которые предъявляют значительные требования к аппарату дыхания. Наибольшая экскурсия грудной клетки отмечена у гребцов, бегунов на средние и длинные дистанции, у пловцов, а наименьшая - у гимнастов, штангистов.

Исследование жизненной емкости легких

Жизненная емкость легких - это объем воздуха, который испытуемый может выдохнуть при максимальном выдохе после максимального глубокого вдоха.

ЖЕЛ является одним из важнейших показателей функционального состояния аппарата внешнего дыхания. Величину ЖЕЛ обычно выражают в единицах объема. Она позволяет косвенно оценить величину площади дыхательной поверхности легких, на которой происходит газообмен между альвеолярным воздухом и кровью легочных капилляров. Чем больше ЖЕЛ, тем больше дыхательная поверхность, большей может быть глубина дыхания и легче достигается увеличение объема вентиляции.

Величина ЖЕЛ зависит от роста, веса, возраста, пола, а также положения тела. Наименьшая величина ЖЕЛ - в положении лежа, сидя и наибольшая - в положении стоя. В спортивной медицине этот показатель определяется в положении стоя.

С возрастом ЖЕЛ увеличивается, ее прирост у мужчин происходит в среднем до 30 лет, у женщин - до 25 лет, затем наблюдается стабилизация этого показателя, а после 35 лет - его постепенное снижение.

Величина ЖЕЛ зависит от размера грудной клетки, ее подвижности и силы дыхательной мускулатуры. Средние показатели принято считать у мужчин - 4000 мл, у женщин - 3200 мл. У спортсменов величина ЖЕЛ может колебаться в широких пределах - от 4500 до 8000 мл у мужчин и от 3500 до 5300 мл - у женщин.

Показатели ЖЕЛ зависят от спортивной специализации. Наибольшие показатели величины ЖЕЛ наблюдаются у спортсменов, тренирующихся преимущественно на выносливость и обладающих высокой кардиореспираторной производительностью.

Для измерения ЖЕЛ нужно сделать максимальный плавный вдох, а затем, зажав нос, плавно равномерно выдохнуть в спирометр. Продолжительность выдоха – 5-7 с. Измерение ЖЕЛ повторяют с интервалом 0,5-1 мин. При повторении двух максимальных величин измерение ЖЕЛ заканчивают. Полученная таким образом величина называется фактической.

В связи с зависимостью ЖЕЛ от веса, роста и возраста фактическая величина может быть правильно оценена только при сравнении с должной величиной. Предложен ряд формул, с помощью которых можно оценить должную величину ЖЕЛ наиболее удобной является формула Антони: должная величина ЖЕЛ равна основному обмену в ккал, определенному по таблицам Гарриса-Бенедикта, умноженному на коэффициент 2,6 для мужчин и 2,3 для женщин:

ДЖЕЛмуж = 00 x 2,6,

ДЖЕЛжен = 00 x 2,3.

Для детей в возрасте менее 16 лет ДЖЕЛ рассчитывается:

для мальчиков ДЖЕЛ = 00 x 2,3,

для девочек ДЖЕЛ = 00 x 2,1.

Для вычисления величины основного объема, необходимой для получения должной ЖЕЛ, по таблицам Гарриса-Бенедикта находят число, соответствующее значению веса данного субъекта. В таблице «Б» в месте пересечения нужных значений возраста и роста находят число «Б». Сумма чисел «А» и «Б» и есть должная величина основного обмена.

Для выражения фактической ЖЕЛ в процентах должной величины пользуются формулой:

Факт. ЖЕЛ, в % = Фактическая ЖЕЛ х 100.

Должная ЖЕЛ

Для определения ДЖЕЛ в спортивной медицине можно использовать формулу Болдуина-Курнана-Ричардса. Эти формулы связывают должную величину ЖЕЛ с ростом испытуемого, его возрастом и полом:

ДЖЕЛмуж = 27,63 - 0,122 х В/х L;

ДЖЕЛжен = 27,78 - 0,101 х В/х L,

где В - возраст в годах; L - длина тела в см.

ДЖЕЛ в норме не должна быть ниже 90% от должной величины, у спортсменов она чаще всего превышает 100%.

ЖЕЛ в % к ДЖЕЛ - 100 ± 10% -средняя

ниже 90% - низкая;

выше 110% - высокая.

Функциональные пробы системы внешнего дыхания

Динамическая спирометрия – определение изменений ЖЕЛ под влиянием физической нагрузки. Определив исходную величину ЖЕЛ в покое, обследуемому предлагают выполнить дозированную физическую нагрузку - 2-минутный бег на месте в темпе 180 шаг/мин при подъеме бедра под углом 70-80°, после чего снова определяют ЖЕЛ. В зависимости от функционального состояния системы внешнего дыхания и кровообращения и их адаптации к нагрузке ЖЕЛ может уменьшиться, остаться неизменной или увеличиться. О достоверных изменениях ЖЕЛ можно говорить только в том случае, если она превысит 200 мл.

Проба Розенталя - пятикратное измерение ЖЕЛ, проводимое через 15-секундные интервалы времени. Результаты данной пробы позволяют оценить наличие и степень утомления дыхательной мускулатуры, что, в свою очередь, может свидетельствовать о наличии утомления других скелетных мышц.

Результаты пробы Розенталя оценивают следующим образом:

- увеличение ЖЕЛ от 1-го к 5-му измерению - отличная оценка;

- величина ЖЕЛ не изменяется - хорошая оценка;

- величина ЖЕЛ снижается на величину до 300 мл - удовлетворительная оценка;

- величина ЖЕЛ снижается более чем на 300 мл - неудовлетворительная оценка.

Проба Шафранского заключается в определении ЖЕЛ до и после стандартной физической нагрузки. В качестве последней используются подъемы на ступеньку в течение 6 мин в темпе 16 шаг/мин. В норме ЖЕЛ практически не изменяется. При снижении функциональных возможностей системы внешнего дыхания значения ЖЕЛ уменьшаются более чем на 300 мл.

Гипоксические пробы дают возможность оценить адаптацию человека к гипоксии и гипоксемии.

Проба Генчи - регистрация времени задержки дыхания после максимального выдоха. Исследуемому предлагают сделать глубокий вдох, затем максимальный выдох. Исследуемый задерживает дыхание при зажатом носе и рте. Регистрируется время задержки дыхания между вдохом и выдохом.

В норме величина пробы Генчи у здоровых мужчин и женщин составляет 20-40 с и для спортсменов – 40-60 с.

Проба Штанге - регистрируется время задержки дыхания при глубоком вдохе. Исследуемому предлагают сделать вдох, выдох, а затем вдох на уровне 85-95% от максимального. Закрывают рот, зажимают нос. После выдоха регистрируют время задержки.

Средние величины пробы Штанге для женщин – 35-45 с для мужчин – 50-60 с, для спортсменок – 45-55 с и более, для спортсменов - 65-75 с и более.

Проба Штанге с гипервентиляцией

После гипервентиляции производится задержка дыхания на глубоком вдохе. Время произвольной задержки дыхания в норме возрастает в 1,5-2,0 раза.

Проба Штанге с физической нагрузкой.

После выполнения пробы Штанге в покое выполняется нагрузка - 20 приседаний за 30 с. После окончания физической нагрузки тотчас же проводится повторная проба Штанге. Время повторной пробы сокращается в 1,5-2,0 раза.

По величине показателя пробы Генчи можно косвенно судить об уровне обменных процессов, степени адаптации дыхательного центра к гипоксии и гипоксемии и состояния левого желудочка сердца.

Лица, имеющие высокие показатели гипоксемических проб, лучше переносят физические нагрузки. В процессе тренировки, особенно в условиях среднегорья, эти показатели увеличиваются.

У детей показатели гипоксемических проб ниже, чем у взрослых.

Инструментальные методы исследования системы дыхания

Пневмотахометрия - определение максимально объемной скорости потока воздуха при вдохе и выдохе. Показатели пневмотахометрии отражают состояние бронхиальной проходимости и силу дыхательной мускулатуры. Бронхиальная проходимость - важный показатель состояния функции внешнего дыхания. Чем шире суммарный просвет воздухоносных путей, тем меньше сопротивление, оказываемое ими потоку воздуха и тем больше его объем способен вдохнуть и выдохнуть человек при максимально форсированном дыхательном акте. 

От величины бронхиальной проходимости зависят энергетические траты на вентиляцию легких. При увеличении бронхиальной проходимости один и тот же объем вентиляции легких требует меньше усилий. Систематические занятия физической культурой и спортом способствуют совершенствованию регуляции бронхиальной проходимости и ее увеличению.

Объемная скорость потока воздуха на вдохе и выдохе измеряется в литрах в секунду.

У здоровых нетренированных людей соотношение объемной скорости вдоха к объемной скорости выдоха близко единице. У больных людей это соотношение всегда меньше единицы. У спортсменов мощность вдоха превышает мощность выдоха, и это соотношение достигает 1,2-1,4.

Для более точной оценки бронхиальной проходимости легче пользоваться расчетом должных величин. Для расчета должной величины фактическая величина ЖЕЛ умножается на 1,24. Нормальная бронхиальная проходимость равна мощности вдоха и выдоха, т.е. 100 ± 20% его от должной величины.

Показатели ПТМ колеблются у женщин от 3,5 до 4,5 л/с; у мужчин - от 4,5 до 6 л/с. У спортсменок величины ПТМ составляют 4-6 л/с, у спортсменов – 5-8 л/с.

В последние годы функцию внешнего дыхания определяют с помощью компьютера «IBM PC» на аппарате «Спироскоп ТМ» методами спирографии и петля поток - объем форсированного выхода, как наиболее приемлемых для динамического исследования дыхания. Так, самые высокие показатели ЖЕЛ, объема форсированного выдоха за 1 с, МВЛ, выявлены в группе выносливости, несколько ниже, но также высокие - в группе единоборств и игровых видов спорта, что указывает на то, что в этих видах спорта развитию качества выносливости уделяется существенное внимание.

Спирография - метод комплексного исследования системы внешнего дыхания с регистрацией показателей частоты дыхания, глубины дыхания, минутного объема дыхания, жизненной емкости легких с ее компонентами: резервный объем вдоха -, резервный объем выдоха -, дыхательный объем -, форсированной ЖЕЛ, максимальной вентиляции легких и потребление кислорода.

ЧД в норме в условиях покоя у взрослых практически здоровых людей колеблется от 14 до 16 дыханий в минуту. У спортсменов с ростом тренированности ЧД может урежаться и составлять от 8 до 12 в минуту, у детей - несколько больше.

ГД, или дыхательный объем также измеряется на спирограмме равномерного спокойного дыхания. ДО составляет примерно 10% емкости легких или 15-18% ЖЕЛ и равен у взрослых 500-700 мл, у спортсменов ДО возрастает и может достигать 900-1300 мл.

МОД представляет собой произведение ДО на ЧД в 1 мин. В покое в условиях нормы эта величина колеблется от 5 до 9 л/мин. У спортсменов его величина может достигать 9-12 л/мин и более. Важно, чтобы МОД при этом возрастал за счет глубины, а не частоты дыхания, что не приводит к избыточному расходу энергии на работу дыхательной мускулатуры. Иногда увеличение МОД в покое может быть связано с недостаточным восстановлением после тренировочных нагрузок.

Резервный объем вдоха - это объем воздуха, который исследуемый может вдохнуть при максимальном усилии вслед за обычным вдохом. В покое этот объем примерно равен 55-63% ЖЕЛ. Этот объем в первую очередь используется для углубления дыхания при нагрузке и определяет способность легких к дополнительному их расширению и вентиляции.

Резервный объем выдоха - это объем воздуха, который исследуемый может выдохнуть при максимальном усилии вслед за обычным выдохом. Его величина колеблется от 25 до 345 от ЖЕЛ в зависимости от положения тела.

Форсированная ЖЕЛ - максимальный объем воздуха, который можно выдохнуть за 1 с. При определении этой величины из положения максимального вдоха испытуемый делает максимально форсированный выдох. Рассчитывается этот показатель в мл/с и выражается в процентах к обычной ЖЕЛ. У здоровых лиц, не занимающихся спортом, этот показатель колеблется от 75 до 85%. У спортсменов этот показатель может достигать больших значений при одновременном увеличении ЖЕЛ и ФЖЕЛ: их процентные соотношения изменяются незначительно. ФЖЕЛ ниже 70% указывает на нарушение бронхиальной проходимости.

Максимальная вентиляция легких - это наибольший объем воздуха, вентилируемый легкими за 1 мин при максимальном усилении дыхания за счет увеличения его частоты и глубины. МВЛ относится к числу показателей, которые наиболее полно характеризуют функциональную способность системы внешнего дыхания. На величину МВЛ влияют ЖЕЛ, сила и выносливость дыхательной мускулатуры, бронхиальная проходимость. Кроме того, МВЛ зависит от возраста, пола, физического развития, состояния здоровья, спортивной специализации, уровня тренированности и периода подготовки. В норме у женщин МВЛ – 50-77 л/мин, у мужчин – 70-90 л/мин. У спортсменов может достигать 120-140 л/мин - женщины, 190-250 л/мин - мужчины. При определении МВЛ измеряют объем вентиляции при максимально произвольном усилении дыхания в течение 15-20 с, а затем приводят полученные данные к минуте и выражают в л/мин. Более продолжительная гипервентиляция приводит к гипокапнии, что вызывает снижение артериального давления и появление у исследуемых головокружений. Оценку уровня функциональной способности системы внешнего дыхания можно получить при сопоставлении МВЛ с должной МВЛ:

ДМВЛ = х 35, формула

МВЛ, в % ДМВЛ = / ДМВЛ

Нормальная величина МВЛ составляет 100±10 ДМВЛ. У спортсменов МВЛ достигает 150% ДМВЛ и более.

Если из МВЛ вычесть МОД в покое, получим величину, показывающую, насколько спортсмен может увеличить вентиляцию легких, так называемый резерв дыхания. В норме он составляет 91-92% МВЛ.

Дыхательный эквивалент - это абстрактная величина, выражающая количество литров воздуха, которое необходимо провентилировать, чтобы использовать 100 мл кислорода.

ДЭ рассчитывается по формуле:

ДЭ = МОДД должное потребление кислорода х, где должное потребление кислорода рассчитывается как частное от деления должного основного обмена по таблице Гарриса-Бенедикта на коэффициент 7,07.

Общеклинические методы исследования

При исследовании ССС учитывают данные анамнеза. В протокол исследования заносятся общие сведения:

- фамилия, имя, отчество испытуемого;

- возраст, основной вид спорта, разряд, стаж, период тренировки и ее особенности, сведения о последней тренировке, самочувствие, наличие жалоб.

Далее при исследовании ССС используются, как и в обычной клинической практике, основные методы исследования: наружный осмотр, пальпация, перкуссия и аускультация.

При наружном осмотре обращают внимание на окраску кожных покровов, форму грудной клетки, расположение и характер верхушечного толчка, наличие отеков.

Пальпацией определяется расположение верхушечного толчка, болезненные толчки в области грудной клетки, наличие отеков.

С помощью перкуссии изучаются границы сердца. Если врач находит при перкуссии выраженное смещение границ сердца, то спортсмена обязательно следует подвергнуть специальному рентгенологическому исследованию.

Аускультацию рекомендуется проводить в различных положениях исследуемого: на спине, на левом боку, стоя. Выслушивание тонов и шумов связано с работой клапанного аппарата сердца. Клапаны расположены «на входе» и «на выходе» обоих желудочков сердца. Атриовентрикулярные клапаны препятствуют обратному забросу крови в предсердия во время систолы желудочков.

Аортальный и легочные клапаны, расположенные у основания крупных артериальных стволов, предупреждают регургитацию крови в желудочки при диастоле.

Атриовентрикулярные клапаны образованы перепончатыми листками, свешивающимися в желудочки наподобие воронки. Их свободные концы соединены тонкими сухожильными связками с сосочковыми мышцами; это препятствует заворачиванию створок клапанов в предсердия во время систолы желудочков. Общая поверхность клапанов гораздо больше, чем площадь атриовентрикулярного отверстия, поэтому их края плотно прижимаются друг к другу. Благодаря такой особенности клапаны надежно смыкаются даже при изменениях объема желудочков. Аортальный и легочный клапаны устроены несколько по-иному: каждый из них состоит из трех кармашков в виде полумесяцев, окружающих устье сосуда. Когда полулунные клапаны замкнуты, их створки образуют фигуру в виде трехконечной звезды. Во время диастолы токи крови устремляются за створки клапанов и завихряются позади них, в результате клапаны быстро закрываются, благодаря чему регургитация крови в желудочки очень невелика. Чем выше скорость кровотока, тем плотнее смыкаются створки полулунных клапанов. Открывание и закрывание сердечных клапанов связано прежде всего с изменением давления в тех полостях сердца и сосудах, которые отграничиваются этими клапанами. Звуки, возникающие при этом, и создают тоны сердца. При сокращениях сердца возникают колебания звуковой частоты, передающиеся на грудную клетку, где их можно выслушать либо просто ухом, либо при помощи стетоскопа. При выслушивании можно различить два тона: первый из них возникает в начале систолы, второй - в начале диастолы. Первый тон длительнее второго, он представляет собой глухой звук сложного тембра. Этот тон связан главным образом с тем, что в момент захлопывания атриовентрикулярных клапанов сокращение желудочков как бы резко тормозится заполняющей их несжимаемой кровью. В результате возникают колебания стенок желудочков и клапанов, передающиеся на грудную клетку. Второй тон более короткий. Связан с ударом створок полулунных клапанов друг о друга. Колебания этих створок передаются на столбы крови в крупных сосудах, и поэтому второй тон лучше выслушивается не непосредственно над сердцем, а на некотором отдалении от него по ходу тока крови.

Первый тон напротив, лучше аускультируется непосредственно над желудочками: в пятом межреберье по срединно-ключичной линии выслушивают левый атриовентрикулярный клапан, а по правому краю грудины - правый. Эта методика является классическим методом, используемым в диагностике пороков сердца, оценке функционального состояния миокарда.

Важное значение при исследовании ССС придается правильной оценке пульса. Пульсом называется толчкообразные смещения стенок артерий при заполнении их кровью, выбрасываемой при систоле левого желудочка.

Пульс определяется с помощью пальпации на одной из периферических артерий. Обычно пульс подсчитывается на лучевой артерии по 10-секундным отрезкам времени 6 раз. Во время нагрузки определить и точно подсчитать пульс на лучевой артерии не всегда возможно, поэтому пульс рекомендуется подсчитывать на сонной артерии или на области проекции сердца.

У взрослого здорового человека частота сердечных сокращений в покое колеблется от 60 до 90 ударов в минуту. На ЧСС влияют положение тела, пол и возраст человека. Повышение частоты пульса более 90 ударов в минуту называется тахикардией, а ЧСС менее 60 ударов в минуту - брадикардией.

Ритмичным считается пульс в том случае, если количество ударов за 10-секундные промежутки не отличается более чем на 1 удар. Аритмичность пульса - значительные колебания числа сердечных сокращений за 10-секундные отрезки времени.

Наполнение пульса оценивается как хорошее, если при наложении трех пальцев на лучевую артерию пульсовая волна хорошо прощупывается; как удовлетворительное при небольшом надавливании на сосуд пульс достаточно легко подсчитывается; как плохое наполнение - пульс с трудом улавливается при надавливании тремя пальцами.

Напряжение пульса - это состояние тонуса артерии и оценивается как мягкий пульс, свойственный здоровому человеку, и твердый - при нарушении тонуса артериального сосуда.

Сведения о характеристиках пульса заносятся в соответствующие графы протокола исследования.

Артериальное давление измеряется ртутным, мембранным или электронным тонометром, сфигмоманометром. Манжета манометра накладывается на левое плечо и в дальнейшем не снимается до конца исследования. Показатели АД записываются в виде дроби, где в числителе - данные максимального, а в знаменателе - данные минимального давления.

Этот метод измерения АД наиболее распространен и называется слуховым или аускультативным методом Н.С. Короткова.

Нормальный диапазон колебаний для максимального давления у спортсменов составляет 90-139, а для минимального – 60-89 мм.рт.ст.

АД зависит от возраста человека. Так, у 17-18-летних нетренированных юношей верхняя граница нормы равна 129/79 мм.рт.ст., у лиц 19-39 лет - 134/84, у лиц 40-49 лет - 139/84, у лиц 50-59 лет - 144/89, у лиц старше 60 лет - 149/89 мм.рт.ст.

Артериальное давление ниже 90/60 мм.рт.ст. называется пониженным, или гипотонией, АД выше 139/89 - повышенным, или гипертонией.

Среднее АД является важнейшим показателем состояния системы кровообращения. Эта величина выражает энергию непрерывного движения крови и, в отличие от величин систолического и диастолического давлений, является устойчивой и удерживается с большим постоянством.

Определение уровня среднего артериального давления необходимо для расчета периферического сопротивления и работы сердца. В условиях покоя его можно определить расчетным способом. Используя формулу Hickarm, можно определить среднее артериальное давление:

АДср = АДд - /3, где АДср - среднее артериальное давление; АДс - систолическое, или максимальное, АД; АДд - диастолическое, или минимальное, АД.

Зная величины максимального и минимального АД можно определить пульсовое давление:

ПД = АДс - АДд.

В спортивной медицине для определения ударного или систолического объема крови пользуются формулой Старра:

СО = 90,97 + - - 0,61 х В), где СО - систолический объем крови; ПД - пульсовое давление; Дд - диастол ическое давление; В - возраст.

Используя величины ЧСС и СО, определяется минутный объем кровообращения:

МОК = ЧСС х СО л/мин.

По величинам МОК и АДср можно определить общее периферическое сопротивление сосудов:

ОПСС = АДср х 1332 / МОКдин х см - 5/с, где ОПСС - общее периферическое сопротивление сосудов; АДср - среднее артериальное давление; МОК - минутный объем кровообращения; 1332 - коэффициент для перевода в дины.

Чтобы рассчитать удельное периферическое сопротивление сосудов, следует привести величину ОПСС к единице поверхности тела, которая рассчитывается по формуле Дюбуа, исходя из роста и массы тела обследуемого.

S = 167,2 х Мх Д х 10-4 х, где М - масса тела, в килограммах; Д - длина тела, в сантиметрах.

Для спортсменов величина периферического сопротивления сосудов в состоянии покоя составляет примерно 1500 дин см -5/с и может колебаться в широких пределах, что связано с типом кровообращения и направленностью тренировочного процесса.

Для максимально возможной индивидуализации главных гемодинамиче-ских показателей, которыми являются СО и МОК, нужно их привести к площади поверхности тела. Показатель СО, приведенный к площади поверхности тела, называется ударным индексом, показатель МОК - сердечным индексом.

Н.Н. Савицкий по величине СИ выделил 3 типа кровообращения: гипо-, -эу- и гиперкинетическии типы кровообращения. Этот индекс в настоящее время расценивается как основной в характеристике кровообращения.

Гипокинетический тип кровообращения характеризуется низким показателем СИ и относительно высоким показателями ОПСС и УПСС.

При гиперкинетическом типе кровообращения определяются самые высокие значения СИ, УИ, МОК и УО и низкие - ОПСС и УПСС.

При средних значениях всех этих показателей тип кровообращения называется эукинетическим.

Для эукинетического типа кровообращения СИ = 2,75 - 3,5 л / мин/ м2. Гипокинетический тип кровообращения имеет СИ менее 2,75 л / мин/м2, а гиперкинетический тип кровообращения более 3,5 л/ мин/м2.

Различные типы кровообращения обладают своеобразием адаптационных возможностей и им свойственно разное течение патологических процессов. Так, при ГрТК сердце работает в наименее экономичном режиме и диапазон компенсаторных возможностей этого типа кровообращения ограничен. При этом типе гемодинамики имеет место высокая активность симпатоадреналовой системы. Наоборот, при ГТК сердечно-сосудистая система обладает большим динамическим диапазоном и деятельность сердца наиболее экономична.

Поскольку пути приспособления сердечно-сосудистой системы у спортсменов зависят от типа кровообращения, то и способность адаптироваться к тренировкам с различной направленностью тренировочного процесса имеет отличия при разных типах кровообращения.

Так, при преимущественном развитии выносливости ГТК встречается у 1/3 спортсменов, а при развитии силы и ловкости - всего у 6%, при развитии быстроты этого типа кровообращения не обнаруживается. ГрТК отмечается преимущественно у спортсменов, в тренировках которых преобладает развитие скорости. Данный тип кровообращения у спортсменов, развивающих выносливость, встречается очень редко, в основном при снижении адаптационных возможностей сердечно-сосудистой системы.

Дополнительные методы исследования сердечно-сосудистой системы

Электрокардиография

Проводниковая система сердца. Сокращения сердечной мышцы вызываются электрическими импульсами, которые зарождаются и проводятся в специализированную и видоизмененную ткань сердца, названную проводниковой системой. В нормальном сердце импульсы возбуждения возникают в синусовом узле, проходят через предсердия и достигают атриовентрикулярного узла. Затем они проводятся в желудочки через пучок Гиса, его правую и левую ножку, и сеть волокон Пуркинье и достигают сократительных клеток миокарда желудочков.

Синусовый узел представляет собой пучок специфической сердечно-мышечной ткани, длина которого достигает 10-20 мм и ширина – 3-5 мм. Он расположен субэпикардиально в стенке правого предсердия, непосредственно сбоку от устья верхней полой вены. Клетки синусового узла расположены в нежной сети, состоящей из коллагеновой и эластической соединительной ткани. Существует два вида клеток синусового узла - водителя ритма, или пейсмекерные, и проводниковые. Р-клетки генерируют электрические импульсы возбуждения, а Т-клетки выполняют преимущественно функцию проводников. Клетки Р связываются как между собой, так и с клетками Т. Последние, в свою очередь, анастомозируют друг с другом и связываются с клетками Пуркинье, расположенными около синусового узла.

В самом синусовом узле и рядом с ним находится множество нервных волокон симпатического и блуждающего нервов, а в субэпикардиальной жировой клетчатке над синусовым узлом расположены ганглии блуждающего нерва. Волокна к ним исходят в основном из правого блуждающего нерва.

Питание синусового узла осуществляется синоатриальной артерией. Это сравнительно крупный сосуд, который проходит через центр синусового узла и от него отходят мелкие ветви к ткани узла. В 60% случаев синоатриальная артерия отходит от правой коронарной артерии, а 40% - от левой.

Синусовый узел является нормальным электрическим водителем сердечного ритма. Через равные промежутки времени в нем возникают электрические потенциалы, возбуждающие миокард и вызывающие сокращение всего сердца. Клетки Р синусового узла генерируют электрические импульсы, которые проводятся клетками Т в близко расположенные клетки Пуркинье. Последние, в свою очередь, активируют рабочий миокард правого предсердия. Кроме того, по специфическим путям электрический импульс проводится в левое предсердие и атриовентрикулярный узел.

Атриовентрикулярный узел находится справа от межпредсердной перегородки над местом прикрепления трехстворчатого клапана, непосредственно рядом с устьем коронарного синуса. Форма и размеры его разные: в среднем длина его достигает 5-6 мм, а ширина – 2-3 мм. Подобно синусовому узлу, атриовентрикулярный узел содержит также два вида клеток - Р и Т. В атривентрикулярном узле клеток Р гораздо меньше, и количество сети коллагеновой соединительной ткани незначительное количество. У него нет постоянной, центрально-проходящей артерии. Кровоснабжение происходит артерией атриовентрикулярного узла. В 90% случаев она отходит от правой коронарной артерии, а в 10% - от ветвей левой коронарной артерии. Клетки его связываются анастомозами и образуют сетчатую структуру.

Пучок Гиса, названный еще и атриовентрикулярным пучком, начинается непосредственно в нижней части атриовентрикулярного узла, и между ними нет ясной грани. Пучок Гиса проходит по правой части соединительнотканного кольца между предсердиями и желудочками, названного центральным фиброзным телом. Затем пучок Гиса переходит в задненижний край мембранозной части межжелудочковой перегородки и доходит до ее мышечной части. Пучок Гиса состоит из клеток Пуркинье, расположенных в виде параллельных рядов с незначительными анастомозами между ними, покрытых мембраной из коллагеновой ткани. Пучок Гиса расположен совсем рядом с задней некоронарной створкой аортального клапана. Длина его около 20 см. Питание осуществляется артерией атриовентрикулярного узла.

До пучка Гиса доходят нервные волокна блуждающего нерва, но в нем нет ганглиев этого нерва.

Пучок Гиса в нижней части разделяется на две ножки - правую и левую, которые идут интракардиально по соответствующей стороне межжелудочковой перегородки.

Правая ножка пучка Гиса представляет собой длинный, тонкий, хорошо обособленный пучок, состоящий из множества волокон, имеющих незначительные разветвления.

Левая ножка пучка Гиса с самого начала делится на две ветви - переднюю и заднюю. Передняя ветвь, относительно более длинная и тонкая, достигает передней сосочковой мышцы, разветвляясь в передневерхней части левого желудочка. Задняя ветвь, относительно короткая и толстая, достигает основания задней сосочковой мышцы левого желудочка. Левая и правая ножка пучка Гиса составлены из двух видов клеток - клеток Пуркинье, очень похожих на клетки сократительного миокарда. Кровоснабжение ножек осуществляется в основном за счет веточек левой передней коронарной артерии. Волокна блуждающего нерва доходят до обеих ножек Гиса, однако в проводниковых путях желудочков нет ганглиев этого нерва.

Волокна сети Пуркинье. Конечные разветвления правой и левой ножки пучка Гиса связываются анастомозами с обширной сетью клеток Пуркинье, расположенных субэндокардиально в обоих желудочках. Клетки Пуркинье представляют собой видоизмененные клетки миокарда, которые непосредственно связываются с сократительным миокардом желудочков. Электрический импульс, поступающий по внутрижелудочковым проводящим путям, достигает клеток сети Пуркинье и отсюда переходит непосредственно к сократительным клеткам желудочков, вызывая сокращение миокарда. Клетки Пуркинье питаются кровью из капиллярной сети артерий соответствующего района миокарда. Нервные волокна блуждающего нерва не доходят до сети волокон Пуркинье в желудочках.

Метод ЭКГ - способ регистрации биотоков сердца, возникающих в период возбуждения, вслед за которым следует сокращение.

Возбуждение различных отделов сердца возникает в определенной последовательности: импульс возбуждения возникает в синусовом узле, расположенном в области правого предсердия, возбуждение распространяется на миокард предсердия - на ЭКГ регистрируется зубец Р, затем по проводящей системе сердца, расположенной между предсердием и желудочком, возбуждение достигает миокарда желудочка - в этот момент регистрируется участок горизонтальной линии, длительность его определяется временем «пробегания» возбуждения по предсердиям. Далее в состояние возбуждения приходит миокард желудочков - и в этот момент на ЭКГ регистрируется комплекс зубцов QRS: Q - отрицательный, вслед за ним R - всегда положительный и наибольший из всех зубцов и зубец S - второй отрицательный зубец.

Этот комплекс зубцов называют желудочковым комплексом QRS, так как он регистрируется в момент возбуждения желудочков.

В тот момент, когда все мышечные волокна желудочков находятся в состоянии возбуждения, разности потенциалов на отдельных участках миокарда нет, поэтому на ЭКГ регистрируется участок горизонтальной линии, называемый сегментом ST от конца зубца S до начала зубца Т. Сегмент ST - важный элемент ЭКГ, по местоположению его относительно изоэлектрической «нулевой» линии судят о состоянии кровообращения сердца.

Далее начинается процесс прекращения возбуждения в миокарде желудочков, в этот момент появляется разность потенциалов. Одни волокна еще находятся в состоянии возбуждения, другие пришли в состояние покоя. В этот момент регистрируется зубец Т. Это очень важный показатель ЭКГ, по его форме и амплитуде судят о состоянии обменных процессов в сердечной мышце, о метаболизме в ней. При нормальном состоянии обменных процессов этот зубец должен быть по амплитуде не менее 1/3 зубца R, по форме - восходящая сторона длиннее, чем нисходящая.

Как только прекратится процесс возбуждения во всех мышечных волокнах желудочков, наступит диастола - расслабление мышечных волокон. В этот момент на ЭКГ будет регистрироваться горизонтальная линия сегмент - в этот момент биотоков сердца нет. Эту линию называют изоэлектрической линией нулевого потенциала. Так выглядит ЭКГ у здорового человека. Во время нагрузки удобно регистрировать отведение Д по Небу.

Электрокардиографические отведения

Основным прибором, применяемым для регистрации электрических потенциалов миокарда, является электрокардиограф. Прибор представляет собой электрический контур, состоящий из гальванометра и двух точек электрического поля, к которым приложены электроды - отведения. Существует две системы отведений: двухполюсные и однополюсные. Стандартное электрокардиографическое исследование включает запись ЭКГ в 12 отведениях: трех двухполюсных от конечностей, трех однополюсных от конечностей и шести однополюсных от прекардиальной области грудной клетки.

Стандартные отведения

Двухполюсные отведения от конечностей называются стандартными, или классическими, так как они известны еще со времен работ Эйнтховена. Их обозначают римскими цифрами I, II, III. Расположение электродов в стандартных отведениях следующее:

Однополюсные отведения от конечностей. В однополюсных отведениях от конечностей дифферентным электродом регистрируются в основном локальные изменения прилегающего участка миокарда, поскольку потенциал индифферентного электрода близок нулю, что достигается шунтированием на нем двух или трех отведений от конечностей. Называются эти отведения усиленными и обозначаются a V-aqentum volt, aVR - - правый), aVL - левый), aVF - нога). Электроды во всех отведениях располагаются одинаково на конечностях.

Однополюсные грудные отведения. При регистрации ЭКГ в однополюсных грудных отведениях в качестве индифферентного электрода используют центральный электрод, а дифферентный электрод помещают в определенные точки на поверхности грудной клетки. Таких точек шесть.

Дополнительные отведения. При регистрации ЭКГ при физической нагрузке применяют методику Неба, при этом электроды размещаются на грудной клетке так, что образуется неравносторонний треугольник, располагающийся в косом направлении с дорзальной, передней и нижней сторонами отведений. Для записи используются те же электроды, что и в стандартных отведениях от конечностей. При этом электрод правой руки устанавливают во II межреберье справа у края грудины, электрод левой руки - в точке проекции верхушечного толчка на заднюю подмышечную линию, электрод левой ноги - над верхушкой сердца. Запись ЭКГ производится в системе стандартных отведений: D - в I отведении, А - во II отведении, I - в III отведении.

Отведение N, мало отличается от отведения А по Небу, однако в отведении N, регистрируется большая разность потенциалов. В отведении N2 один электрод располагается на II ребре у правого края грудины, другой - в IV межреберье у левого края грудины. В отведении N3 электроды устанавливают в зоне верхушечного толчка и в симметричной позиции на правой половине грудной клетки. Отведения N, и N3 обладают большей диагностической ценностью: в отведении N, регистрируют ЭКГ во время бега, в отведение N3 регистрируют работу руками.

Зубцы ЭКГ обозначаются латинскими буквами Р, Q, R, S, Т.

Зубец Р - предсердный комплекс. Зубец Р положительный, это показатель синусового ритма. Амплитуда зубца Р наибольшая во II стандартном отведении. Измеряют его продолжительность и амплитуду. Продолжительность зубца Р составляет 0,06-0,10 с, а амплитуда не должна превышать 2,5 мм.

Интервал PQ - от начала зубца Р до начала зубца Q или R. Он соответствует времени прохождения возбуждения по предсердиям и атриовентрикулярному соединению до миокарда желудочков. PQ зависит от возраста, массы тела и частоты ритма, укорачиваясь при тахикардии. В норме PQ составляет 0,12-0,18. При брадикардии он может удлиняться до 0,22 с.

Интервал PQ измеряют в отведении от конечностей, где хорошо выражен зубец Р и комплекс QRS. Обычно таким отведением бывает II стандартное.

Комплекс QRS - желудочковый комплекс, регистрируемый во время возбуждения желудочков. Ширина комплекса QRS в норме составляет 0,06-0,10 с и указывает на продолжительность внутрижелудочкового проведения возбуждения.

Продолжительность комплекса QRS лучше определять во II стандартном отведении.

Зубец Q - начальный зубец комплекса QRS - играет важную роль при выявлении патологии.

Зубец R - обычно основной зубец ЭКГ. Он обусловлен возбуждением желудочков. Амплитуда зубца R в стандартных и в усиленных отведениях от конечностей обусловлена расположением электрической оси сердца RII>RI >RIH и R aVR>V2.

Амплитуда зубца R в любом отведении от конечностей не должна превышать 22 мм.

Зубец S в основном обусловлен конечным возбуждением основания левого желудочка. Это непостоянный зубец ЭКГ, т.е. он может отсутствовать.

Интервал S-Т - это отрезок ЭКГ между концом комплекса QRS и началом зубца Т. Он соответствует тому периоду сердечного цикла, когда оба желудочка полностью охвачены возбуждением. Интервал S-Т в норме расположен на изолинии.

Зубец Т регистрируется во время реполяризации желудочков. В норме зубец Т положительный в большинстве отведений. Во II стандартном отведении амплитуда зубца Т должна составлять от 2 до 6 мм.

Интервал Q-Т - электрическая систола желудочков. Интервал Q-Т - это время в секундах от начала комплекса QRS до конца зубца Т. Электрическая систола желудочков является постоянной для данной частоты сердечных сокращений. Существуют таблицы, в которых представлены нормативы электрической систолы данного пола и частоты ритма. Если продолжительность интервала Q-Т превышает нормативы, то говорят об удлинении электрической систолы.

    Banner Akad_Zaharkin_Novosib Banner IdealScout Banner SportExpert banner altayvitaminy ArtHockey Banner_Sakhalin

Все права защищены. Любое использование материалов сайта допускается только с разрешения правообладателя. За получением разрешения на использование обращаться по адресу E-Mail Image При любом использовании материалов ссылка на сайт lifeinhockey.ru обязательна ©