Основные функциональные пробы с физическими нагрузками. Часть 1

Нередко обследования человека в условиях мышечного покоя бывает достаточно для выявления заболеваний и перенапряжения, определения противопоказаний к занятиям. Однако при оценке функционального состояния пациента такие обследования в большинстве случаев следует рассматривать лишь как фоновые, ибо главный критерий для обоснованных рекомендаций по двигательному режиму и выявления его эффекта - это способность организма наиболее результативно и быстро адаптироваться к повышенным требованиям. Характер реакции на физическую нагрузку нередко служит единственным и наиболее ранним проявлением нарушений функционального состояния и заболеваний. Толерантность к нагрузке служит основным критерием дозирования физических нагрузок в системе подготовки и реабилитации. Что касается квалифицированных спортсменов, достигших высокого уровня тренированности, то дальнейшие изменения проявляются главным образом и в первую очередь - именно в характере реакции на физическую нагрузку.

Все это обусловливает особое значение функциональных проб в комплексной методике врачебного обследования физкультурников, спортсменов и лиц, занимающихся физической культурой.

Функциональная проба - это нагрузка, задаваемая обследуемому для определения функционального состояния и возможностей какого-либо органа, системы или организма в целом. Используется преимущественно при спортивно-медицинских исследованиях. Нередко термин «функциональная проба с физической нагрузкой» заменяется термином «тестирование». Однако, хотя «проба» и «тест» - это, по существу, синонимы, все же «тест» - термин в большей степени педагогический и психологический, ибо подразумевает определение работоспособности, уровня развития физических качеств, особенностей личности. Физическая работоспособность тесно связана с путями ее обеспечения, т.е. с реакцией организма на данную работу, но для педагога в процессе тестирования ее определение не обязательно. Для врача же реакция организма на данную работу - показатель функционального состояния. Даже высокие показатели работоспособности при чрезмерном напряжении адаптации не позволяют высоко оценить функциональное состояние обследуемого.

Классификация функциональных проб

В практике спортивной медицины используются различные функциональные пробы - с переменой положения тела в пространстве, задержкой дыхания на вдохе и выдохе, натуживанием, изменением барометрических условий, пищевыми и фармакологическими нагрузками и др. Но в данном разделе мы коснемся лишь основных проб с физическими нагрузками, обязательных при обследовании занимающихся физическими упражнениями. Эти пробы часто называют пробами сердечно-сосудистой системы, поскольку главным образом используются методы исследования кровообращения и дыхания, но это не совсем правильно, эти пробы следует рассматривать шире, поскольку они отражают функциональное состояние всего организма.

Классифицировать их можно по разным признакам: по структуре движения, по мощности работы, по кратности, темпу, сочетанию нагрузок, по соответствию нагрузки направленности двигательной деятельности обследуемого - специфические и неспецифические, по используемой аппаратуре, по возможности определять функциональные сдвиги во время нагрузки или только в восстановительном периоде и т.п.

Идеальная проба характеризуется: 1) соответствием заданной работы привычному характеру двигательной деятельности обследуемого и тем, что не требуется освоения специальных навыков; 2) достаточной нагрузкой, вызывающей преимущественно общее, а не локальное утомление, возможностью количественного учета выполненной работы, регистрации «рабочих» и «послерабочих» сдвигов; 3) возможностью применения в динамике без большой затраты времени и большого количества персонала; 4) отсутствием негативного отношения и отрицательных эмоций обследуемого; 5) отсутствием риска и болезненных ощущений.

Для сравнения результатов исследования в динамике важны: 1) стабильность и воспроизводимость; 2) объективность; 3) информативность.

Преимущество имеют пробы с достаточной нагрузкой и количественной характеристикой выполненной работы, возможностью фиксации «рабочих» и «послерабочих» сдвигов, позволяющие охарактеризовать аэробную и анаэробную производительность.

Противопоказанием к тестированию является любое острое, подострое заболевание либо обострение хронического, повышение температуры тела, тяжелое общее состояние.

С целью увеличения точности исследования, уменьшения доли субъективизма в оценках, возможности использования проб при массовых обследованиях важно применять современную вычислительную технику с автоматическим анализом результатов.

Для того чтобы результаты были сравнимы при динамическом наблюдении, необходимы одинаковые характер и модель нагрузки, одинаковые условия внешней среды, времени суток, режима дня, предварительный отдых не менее 30 мин, исключение дополнительных воздействий на обследуемого. Перечисленные условия полностью относятся и к обследованию в условиях относительного мышечного покоя.

Оценить реакцию испытуемого на нагрузку можно по показателям, отражающим состояние различных физиологических систем. Обязательным является определение вегетативных показателей, поскольку изменение функционального состояния организма больше отражается на менее устойчивом звене моторного акта - вегетативном его обеспечении. Как показали наши специальные исследования, вегетативные показатели при физических нагрузках менее дифференцированы в зависимости от направленности двигательной деятельности и уровня мастерства и больше обусловлены функциональным состоянием к моменту обследования. В первую очередь это относится к сердечнососудистой системе, деятельность которой теснейшим образом связана со всеми функциональными звеньями организма, во многом определяя его жизнедеятельность и механизмы адаптации, и поэтому в значительной степени отражает функциональное состояние организма в целом. Видимо, в связи с этим методы исследования кровообращения в клинике и спортивной медицине разработаны наиболее подробно и широко используются при любом обследовании занимающихся. При пробах с субмаксимальными и максимальными нагрузками на основании данных о газообмене и биохимических показателях оцениваются также обмен, аэробная и анаэробная работоспособность.

При выборе метода исследования определенное значение имеет направленность двигательной деятельности занимающегося и его преимущественное влияние на то или иное функциональное звено организма. Например, при тренировке, характеризующейся преимущественным проявлением выносливости, кроме исследования сердечно-сосудистой системы, обязательно определение показателей, отражающих функцию дыхания, кислородный обмен и состояние внутренней среды организма, при сложнотехнических и координационных видах спорта - состояние центральной нервной системы и анализаторов, при скоростно-силовых видах, а также в процессе реабилитации после травм и заболеваний опорно-двигательного аппарата, после заболеваний сердца - показателей кровоснабжения и сократительной способности миокарда и т.д.

Определение до и после нагрузки частоты и ритма сердечных сокращений, артериального давления, снятие ЭКГ обязательны во всех случаях. Получившую в последнее время широкое распространение оценку реакции на нагрузку только по пульсовой ее стоимости нельзя признать достаточной, поскольку одна и та же ЧСС может отражать разное функциональное состояние обследуемого, например хорошее при сопряженных и неблагоприятное при разнонаправленных изменениях ЧСС и артериального давления. Одновременно с подсчетом пульса измерение артериального давления позволяет судить о взаимосвязи разных компонентов реакции, т.е. о регуляции кровообращения, а электрокардиография - о состоянии миокарда, в наибольшей степени страдающего при чрезмерной нагрузке.

Улучшение функционального состояния проявляется экономизацией реакции при стандартных нагрузках умереной интенсивности: кислородный запрос удовлетворяется при меньшем напряжении обеспечивающих систем, главным образом кровообращения и дыхания. При предельных, выполняемых до отказа нагрузках более тренированный организм способен к большей мобилизации функций, что и обусловливает способность выполнить эту нагрузку, т.е. более высокую работоспособность. При этом сдвиги в дыхании, кровообращении, внутренней среде организма могут быть весьма значительными.

Однако способность к максимальной мобилизации функций тренированного организма, установленная еще B.C. Фарфелем в 1949 г., благодаря совершенной регуляции используется рационально - лишь тогда, когда предъявленные требования действительно являются максимальными. Во всех остальных случаях действует основной защитный механизм саморегуляции - тенденция к меньшему отклонению от физиологического равновесия при более целесообразной взаимосвязи сдвигов. С улучшением функционального состояния развивается способность к правильному функционированию в широком диапазоне временного изменения гомеостаза: между экономизацией и максимальной мобилизационной готовностью существует диалектическое единство.

Таким образом, при оценке реакции на физическую нагрузку решающим фактором должна быть не величина сдвигов, а их соотношение и соответствие выполненной работе. Совершенствование условно-рефлекторных связей, установление согласованной работы органов и систем, усиление взаимосвязей между разными звеньями функциональной системы при физических нагрузках - важный критерий оценки реакций.

Функциональный резерв организма тем выше, чем меньше при нагрузке степень напряжения регуляторных механизмов, чем выше экономичность и стабильность функционирования эффекторных органов и физиологических систем организма при определенных действиях и чем выше уровень функционирования при экстремальных воздействиях.

П.Е. Гуминер и Р.Е. Мотылянекая различают три варианта регулирования: 1) относительную стабильность функций в большом диапазоне мощности, что отражает хорошее функциональное состояние, высокий уровень функциональных возможностей организма; 2) снижение показателей при повышении мощности работы, что указывает на ухудшение качества регулирования; 3) повышение сдвигов при увеличении мощности, что свидетельствует о мобилизации резервов в затрудненных условиях.

Важнейший и почти абсолютный показатель при оценке адаптации к нагрузке и тренированности - быстрота восстановления. 

Даже очень большие сдвиги при быстром восстановлении не могут оцениваться отрицательно.

Применяемые при врачебном обследовании функциональные пробы можно условно разделить на простые и сложные. К простым относятся пробы, выполнение которых не требует специальных приспособлений и большой затраты времени, поэтому применение их доступно в любых условиях. Сложные пробы выполняются с помощью специальных приспособлений и аппаратов.

Простые пробы

Они делятся на одно- двухмоментные и комбинированные. Первые характеризуются однократной нагрузкой - 20 приседаний, бег на месте в темпе 180 шагов/мин в течение 2 и 3 мин. При двух- и трехмоментных пробах нагрузка выполняется повторно с небольшими интервалами. При этом нагрузки могут быть одинаковыми или различными, как при пробе Серкина и Иониной, пробе Пашона - Мартине, пробе Шатохина и соавт..

Невозможность точного учета выполненной работы и сравнительно небольшая нагрузка ограничивают использование этих проб во врачебно-спортивной практике, главным образом при массовых исследованиях, но при соблюдении строго одинаковых условий и они могут дать определенную информацию.

При хорошем функциональном состоянии обследуемого ЧСС после 20 приседаний увеличивается не более чем до 78-110 уд/мин, систолическое артериальное давление - до 120-140 мм рт. ст. при снижении диастолического на 5-10 мм, восстановление до исходных величин происходит за 2-5 мин, при 3-минутном беге на месте ЧСС увеличивается на 50-70% по сравнению с исходным уровнем, систолическое артериальное давление увеличивается на 15-40 мм.рт.ст., а диастолическое уменьшается на 5-20 мм.рт.ст., востановительный период продолжается 3-4 мин. У слаботренированных лиц сдвиги более значительны, восстановление затягивается.

Комбинированная проба Летунова

Из числа относительно простых проб наибольшее распространение во врачебно-спортивной практике получила комбинированная проба Летунова, при которой обследуемый последовательно выполняет три нагрузки: 20 приседаний, бег на месте максимально возможной интенсивности в течение 15 с и бег в темпе 180 шагов/мин в течение 3 мин. 

Объединение в пробе нагрузок неодинаковой направленности позволяет охарактеризовать адаптацию организма к различным видам работы, что весьма важно для контроля за развитием физических качеств в ходе тренировки. Бег разной интенсивности привычен для любого занимающегося и не требует специального освоения навыка. Нагрузка сравнительно невелика: потребление кислорода даже после самой большой нагрузки увеличивается по сравнению с таковым в покое всего в 8-10 раз, ЧСС - до 130-150 в минуту, систолическое артериальное давление - до 160-180 мм.рт.ст., диастолическое снижается до 50-60 мм.рт.ст. Пробу можно ставить при различной подготовленности обследуемого. Вместе с тем изменения реакции и быстроты восстановления в связи с динамикой функционального состояния в процессе тренировки или оздоровительных занятий достаточно отчетливы.

Оценка реакции на пробу проводится не только по количественным показателям на основании соотношения сдвигов ЧСС и артериального давления и быстроты восстановления. С этой целью СП. Летунов предложил различать типы реакций.

Типы реакций сердечно-сосудистой системы на физическую нагрузку

Значение типов реакции подтверждено с помощью современных методов исследования. Основной недостаток пробы можно в некоторой степени компенсировать характеристикой качества выполнения нагрузки.

Проба особенно ценна при динамических наблюдениях. Появление атипичных реакций у занимающегося, имевшего ранее нормотоническую реакцию, или замедление восстановления указывает на ухудшение функционального состояния. Повышение тренированности проявляется дальнейшим улучшением качества реакции и ускорением восстановления.

Установленные еще в 1951 г. СП. Летуновым и Р.Е. Мотылянской применительно к комбинированной функциональной пробе типы реакции могут использоваться при любой физической нагрузке, поскольку дают дополнительные критерии для оценки реакции.

Нормотоническая реакция свидетельствует о правильной адаптации к нагрузкам, отражая хорошее функциональное состояние обследуемого. С повышением тренированности реакция экономизируется, восстановление ускоряется.

Атипичные реакции отражают менее эффективную адаптацию к нагрузкам, что бывает чаще всего при недочетах функционального состояния.

Гипертоническая реакция - значительное повышение максимального артериального давления при тенденции к повышению минимального и значительном учащении пульса. Повышаются все показатели артериального давления, тонус сосудов, периферическое сопротивление. Такая реакция чаще встречается в среднем и пожилом возрасте, в начальных стадиях гипертонической болезни, иногда при физическом перенапряжении.

Гипотоническая реакция - незначительное повышение максимального артериального давления при значительном учащении пульса и замедленном восстановлении - характерна для состояния переутомления и астенизации вследствие перенесенного заболевания или других причин.

Дистоническая реакция - резкое снижение диастолического давления, вплоть до прослушивания так называемого бесконечного тона, при значительном повышении систолического артериального давления и учащении сердечных сокращений. Поскольку в первые секунды после нагрузки максимальной интенсивности бесконечный тон прослушивается очень часто, что зависит от нормальных гемодинамических влияний, диагностическое значение такой реакции можно придавать лишь в тех случаях, когда бесконечный тон держится не менее 1-2 мин либо появляется после нагрузок умеренной мощности. Р.Е. Мотылянская установила связь этого феномена с гиперкинетическим типом кровообращения, одним из причинных механизмов которого может быть и физическое перенапряжение. Дистоническая реакция может наблюдаться также после заболеваний, в отягощенных условиях среды, при нейроциркулярной дистонии. Как один из физиологических вариантов приспособления такая реакция иногда встречается у подростков.

«Ступенчатая реакция». В восстановительном периоде после нагрузки максимальное артериальное давление продолжает повышаться, достигая наибольшего значения на 2-3-й минуте, что обусловлено нарушением регуляции кровообращения и определяется преимущественно после скоростной части пробы, требующей наиболее быстрого включения регуляторных механизмов. Появление такой реакции в процессе тренировки чаще всего указывает на переутомление или недовосстановление, но может наблюдаться и при других состояниях, связанных со снижением функции кровообращения вследствие неспособности к быстрому перераспределению крови при физических нагрузках.

Стойкая реакция спортсмена, как правило, отражает индивидуальные особенности адаптации к нагрузкам скоростного характера, что нередко соответствует недостаточно высоким спортивным результатам при скоростных упражнениях.

Однако, поскольку вторичный подъем систолического давления в первые секунды после нагрузки наблюдается нередко и исчезает тем быстрее, чем выше уровень подготовленности, диагностическое значение такая реакция имеет тогда, когда ступенька не менее 10-15 мм.рт.ст. определяется через 40-60 с после нагрузки.

Наиболее важную роль в диагностике играет комбинированная реакция - одновременное наличие признаков различных атипичных реакций при замедленном восстановлении, что четко отражает плохое функциональное состояние и нарушение тренированности.

Значение типов реакции подтверждено с помощью современных методов исследования. Основной недостаток пробы можно в некоторой степени компенсировать характеристикой качества выполнения нагрузки

Проба особенно ценна при динамических наблюдениях. Появление атипичных реакций у занимающегося, имевшего ранее нормотоническую реакцию, или замедление восстановления указывает на ухудшение функционального состояния. Повышение тренированности проявляется дальнейшим улучшением качества реакции и ускорением восстановления.

Установленные еще в 1951 г. СП. Летуновым и Р.Е. Мотылянской применительно к комбинированной функциональной пробе типы реакции могут использоваться при любой физической нагрузке, поскольку дают дополнительные критерии для оценки реакции.

Из проб, позволяющих точно учитывать и количественно оценивать выполненную работу, в практике спортивной медицины и лечебной физкультуры используются преимущественно восхождение на ступеньку, велоэргометрические пробы и пробы на беговой дорожке. Модели нагрузок могут быть разными.

Определение физической работоспособности

Существуют прямые и косвенные, простые и сложные методы определения работоспособности.

Простые и косвенные методы

Функциональная проба Руфье и ее модификация - проба Руфье-Диксона, в которых используют частоту сердечных сокращений в различные по времени периоды восстановления после относительно небольших нагрузок.

Проба Руфье

У испытуемого, находящегося в положении лежа на спине, в течение 5 мин определяют ЧСС за 15 с; затем в течение 45 с испытуемый выполняет 30 глубоких приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывают ЧСС за первые 15 с, а потом за последние 15 с первой минуты периода восстановления.

Оценку работоспособности сердца производят по формуле:

Индекс Руфье - Диксона = 4 - 200/10;

Р - число сердечных сокращений.

Результаты - по величине индекса от 0 до 15. Меньше 3 - высокая работоспособность; 4-6 - хорошая; 7-9 - удовлетворительная; 15 и выше - плохая.

Есть и другой способ выполнения пробы Руфье. У испытуемого стоя измеряют ЧСС за 15 с, затем он выполняет 30 глубоких приседаний. После окончания нагрузки сразу подсчитывается ЧСС за первые 15 с; а потом - за последние 15 с.

Оценка:

Индекс Руфье = + /10.

От 0 до 2,8 - расценивается как хороший, средний - от 3 до 6; удовлетворительный - от 6 до 8 и плохой - выше 8.

Гарвардский степ-тест. Этот тест можно считать промежуточным между простыми и сложными. Его достоинство заключается в методической простоте и доступности. Физическую нагрузку задают в виде восхождения на ступеньку. В классическом виде выполняется 30 восхождений в минуту. Темп движений задается метрономом, частота которого устанавливается на 120 уд/мин. Подъем и спуск состоит из четырех движений, каждому из которых соответствует один удар метронома: 1 - испытуемый ставит на ступеньку одну ногу, 2 - другую ногу, 3 - опускает на пол одну ногу, 4 - опускает на пол другую. В момент постановки обеих ног на ступеньку колени должны быть максимально выпрямлены, а туловище находиться в строго вертикальном положении.

Время восхождения - 5 мин при высоте ступени: для мужчин - 50 см и для женщин - 43 см. Для детей и подростков время нагрузки уменьшают до 4 мин, высоту ступеньки - до 30-50 см. В тех случаях, когда испытуемый не в состоянии выполнить работу в течение заданного времени, фиксируется то время, в течение которого она совершалась.

Регистрация ЧСС после выполнения нагрузки осуществляется в положении сидя в течение первых 30 с на 2, 3 и 4-й минутах восстановления.

Функциональную готовность оценивают с помощью индекса Гарвардского степ-теста по формуле:

ИГСТ = t х 100/ x 2, где t - время восхождения, с; f1 f2, f3, - сумма пульса, подсчитываемого в течение первых 30 с на 2, 3 и 4-й минутах восстановления.

Наилучшие показатели имеют обычно тренирующиеся с преимущественным проявлением выносливости. По данным И.В. Аулика, средняя величина ИГСТ у бегунов на длинные дистанции равна 111, у велосипедистов - 106, у лыжников - 100, боксеров - 94, пловцов - 90, спринтеров - 86 и тяжелоатлетов - 81, для высококвалифицированных тренированных спортсменов возможны более высокие величины - до 127-153.

Диагностическая ценность теста повышается, если, помимо ЧСС, в 1-ю и 2-ю минуты восстановительного периода определять и артериальное давление, что позволяет, помимо количественной, дать и качественную характеристику реакции.

Имеется немало модификаций теста. Мощность нагрузки можно регулировать за счет частоты шагов и высоты ступеньки. Предлагается также объединять в тесте нагрузки различной мощности.

Проба Руфье и Гарвардский степ-тест позволяют характеризовать способность организма к работе на выносливость и выразить ее количественно в виде индекса. Этим облегчаются любые последующие сопоставления, вычисления достоверности различий, корреляционных связей и пр.

Однако Flandrvis, изучая корреляцию между аэробной способностью и показателями этих проб, обнаружил низкие коэффициенты корреляции - 0,55, поэтому эти пробы менее точны, чем с использованием субмаксимальных нагрузок с регистрацией сердечного ритма во время работы.

В основе тестов с определением ЧСС в процессе физической нагрузки лежит тот факт, что при выполнении одинаковой по мощности работы у тренированных лиц пульс учащается в меньшей степени, чем у нетренированных.

Путем изучения ЧСС, газообмена и других функций была создана концепция, согласно которой отличительной чертой человека, имеющего высокую PWC, является экономизация физиологических процессов при физической работе.

Сложные методы определения физической работоспособности

Велоэргометр - прибор, основой которого является велостанок. Задаваемая нагрузка дозируется с помощью частоты педалирования и сопротивления вращению педалей. Мощность выполненной работы выражается в килограммометрах в минуту или в ватах.

Тредбан - бегущая дорожка с регулируемой скоростью движения. Нагрузка зависит от скорости движения дорожки и угла ее наклона по отношению к горизонтальной плоскости, выражается в метрах в секунду.

Использование велоэргометра и трет-бана имеет преимущества и недостатки.

Имеются и другие приборы для тестирования.

На любом приборе можно моделировать нагрузки различного характера и мощности: непрерывные и прерывистые, однократные и повторные, равномерные, возрастающей или перемежающейся мощности. В спортивно-медицинской практике используются пробы с субмаксимальными и максимальными нагрузками.

Многие авторы считают, что истинные функциональные возможности спортсменов можно выявить только на уровне критических сдвигов, т.е. предельных нагрузок, позволяющих судить о функциональных резервах и функционально слабых звеньях.  

Другие авторы указывают на некоторую опасность таких проб, особенно для лиц со скрытыми заболеваниями и недостаточно подготовленных, и о недопустимости проведения этой процедуры без врача.

Физиологические основы мышечной работы

При выполнении физической нагрузки увеличивается расход энергии и возрастает потребление кислорода. При выполнении работы ступенеобразно возрастающей мощности уровень потребления кислорода постепенно нарастает вместе с увеличением сердечного выброса и артериовенозной разницей по кислороду. Линейная зависимость между VО2, сердечным выбросом и артериовенозной разницы при выполнении работы динамического характера сохраняется лишь до определенного предела, после которого VО2 стабилизируется и дальше не нарастает, несмотря на дальнейшее увеличение нагрузки.

Этот устойчивый уровень VО2 характеризует максимальное потребление кислорода, которое определяется как наибольшее количество кислорода, потребляемое за 1 мин. МПК является мерой аэробной мощности кардиореспираторной системы и выражается в мл кислорода на кг массы тела за 1 мин. Приведение этого показателя к единице массы тела необходимо для сопоставления его величины у лиц с различными ростомассовыми характеристиками. Величина МПК варьирует в широких пределах и зависит от состояния центрального кровотока, способности мышц утилизировать кислород. На величину МПК влияют также возраст, пол, размеры тела, генетические факторы, уровень физической активности. У нетренированных мужчин 30-летнего возраста МПК в среднем равен 3200 мл/мин, у спортсменов экстракласса он может достигать 600 мл/мин и более. У 20-летнего мужчины величина МПК, отнесенная к 1 кг массы тела, равна в среднем 45 + 5 мл, у тренированных лиц того же возраста достигает 60 мл/, у олимпийцев приближается к 80 мл/. Величина МПК тесно коррелируют с результатами определения физической работоспособности по тесту PWC-170. Корреляция между этими показателями носит линейный характер в зоне обычных для спортсменов величин PWC-170 – 1100-1800 кгм/мин, что подтверждает высокую информативность МПК при оценке аэробной производительности аппарата кровообращения и физического состояния организма в целом.

Помимо расчета МПК для характеристики функциональной способности сердечно-сосудистой системы к выполнению работы в аэробном режиме широко используется расчет числа метаболических единиц. Для вычисления этого показателя делят величину поглощенного кислорода во время физической нагрузки на количество кислорода, используемое испытуемым в условиях обмена покоя. Таким образом, удается определить, во сколько раз МПК превосходит основной уровень потребления кислорода. При отсутствии возможности исследовать уровень VCh в условиях обмена покоя обычно обходятся расчетом ориентировочного числа ME, принимая уровень VCh в покое за 3,5 мл/кг массы тела, т.е. 1 ME условно приравнивается к 3,5 мл Ог на 1 кг массы тела. У здоровых нетренированных лиц число ME обычно составляет 10-12, у спортсменов может превышать 15-16.

Статические и динамические нагрузки

Рассматривая механизмы срочной адаптации сердца к физическим нагрузкам, следует подчеркнуть, что адаптация к двигательной деятельности рассматривается как реакция целостного организма, в процессе которого на основе запроса исполнительных органов, в данном случае опорно-двигательного аппарата, происходит мобилизация функции аппаратов кровообращения и внешнего дыхания, обеспечивающая поглощение и транспорт кислорода к другим системам, в первую очередь к тем, которые выполняют интенсивную работу.

Первоначально реакции адаптации на физическую нагрузку базируются на филогенетически сформированных готовых механизмах срочной адаптации к гиперфункции. Набор таких механизмов ограничен и предопределен характером гиперфункции. Коренное отличие адаптационных реакций сердца на физические нагрузки от компенсаторной гиперфункции при пороках состоит в периодическом характере физических нагрузок, перемежающихся с достаточно длительными и регулируемыми периодами физиологического покоя. При компенсаторной гиперфункции, вызванной пороком сердца или другим патологическим состоянием сердца, гиперфункция постоянна.

Именно периодичность физических нагрузок позволяет постепенно достичь существенного увеличения мощности системы кровообращения без развития патологических изменений. Вместе с тем, занятия современным спортом высоких достижений сопровождаются предельным ростом объема и интенсивности тренировочных нагрузок. При неправильном построении тренировочного процесса спортивная тренировка в известной мере может приближаться к компенсаторной гиперфункции сердца, во всяком случае опасность развития нарушения адаптации при таких нагрузках существенно возрастает.

При изучении срочных адаптационных реакций аппарата кровообращения в ответ на физические нагрузки необходимо учитывать характер выполняемых упражнений. В физиологии движений различают два типа мышечных сокращений - динамические, или изотонические, и статические, или изометрические.

Динамические упражнения характеризуются изменением длины мышц при неизменяющемся или мало изменяющемся их напряжении. Статические напряжения, напротив, сопровождаются изменением напряжения мышц без изменений или при малом изменении их длины. Выполнение физических упражнений в чистом динамическом или чистом статическом режиме в спортивной и трудовой деятельности практически не встречается, и, как правило, упражнения выполняются в смещенном, преимущественно динамическом и статическом режимах. Динамические нагрузки преобладают при тренировке выносливости и быстроты, статические - при тренировке силы.

В путях адаптации аппарата кровообращения к повторяющимся нагрузкам того или иного характера имеются существенные различия. Если иметь в виду выполнение упражнений динамического или статического характера с вовлечением в работу больших групп мышц, то различия гемодинамического ответа обнаруживаются при однократных нагрузках, т.е. на стадии срочных адаптационных реакций.

Величина ударного объема возрастает линейно лишь до 1/3 от МПК, далее прирост величины УО незначителен. Однако МОК растет линейно до достижения уровня МПК в основном за счет роста ЧСС.

Определение предельно допустимой ЧСС, в зависимости от возраста, можно рассчитать по формуле R.Marshall &J.Shepherd:

ЧССмакс = 220 - Т.

Скорость нарастания величины УО существенно выше скорости роста ЧСС. В результате УО приближается к своему максимальному значению при VO2, равному примерно 40% от МПК и ЧСС около ПО уд/мин. Рост УО во время выполнения физической нагрузки обеспечивается благодаря взаимодействию ряда вышеописанных регуляторных механизмов. Так, при увеличении нагрузки под влиянием возрастающего венозного возврата, наполнение желудочков сердца увеличивается, что в сочетании с ростом растяжимости миокарда приводит к увеличению конечно-диастолического объема. Это, в свою очередь, означает возможность увеличения УО крови за счет мобилизации базального резервного объема желудочков. Увеличение сократительной способности сердечной мышцы сопряжено также с ростом ЧСС. Другим механизмом мобилизации базального резервного объема является нейрогуморальный механизм, регулирующийся через воздействие на миокард катехоламинов.

Реализация перечисленных механизмов срочной адаптации происходит через систему внутриклеточной регуляции процессов, протекающих в миокарди-оцитах, к которым относятся их возбуждение, сопряжение возбуждения и сокращения, расслабление миокардиальных клеток, а также их энергетическое и структурное обеспечение. Само собой разумеется, что в процессе срочных адаптационных реакций на физические нагрузки происходит интенсификация всех перечисленных выше процессов жизнедеятельности миокардиальных клеток, во многом определяется характером нагрузки.

Учитывая особенности гемодинамического ответа на динамическую нагрузку, полагают, что среди кардиальных механизмов увеличение УО ведущую роль играет увеличение скорости расслабления миокарда и связанное с ней совершенствование транспорта Са2+. При выполнении физических нагрузок динамического характера в ответ на изменение сердечного выброса и сосудистого тонуса отмечается подъем артериального давления. Прямое измерение артериального давления с помощью катетеров, введенных в плечевую и бедренную артерии молодых здоровых людей, занимающихся различными видами спорта, показало, что при нагрузках в 150-200 Вт систолическое давление повышалось до 170-200 мм.рт.ст., в то время как диастолическое и среднее давление изменялись весьма незначительно.

При этом закономерно падает периферическое сопротивление, снижение его является одним из самых важных экстракардиальных механизмов срочной адаптации к динамическим нагрузкам.

Другим таким механизмом является увеличение использования кислорода из единицы объема крови. Доказательством включения этого механизма является изменение артериовенозной разницы по кислороду при нагрузке. Так, по расчетам В.В. Васильевой и Н.А. Степочкиной, в состоянии покоя венозная кровь уносит за 1 мин примерно 720 мл неиспользованного кислорода, в то время как на высоте максимальной физической нагрузки в оттекающей от мышц венозной крови кислорода практически не содержится.

При динамических нагрузках наряду с повышением сердечного выброса увеличивается сосудистый тонус. Последний характеризуется скоростью распространения пульсовой волны, которая, по данным многих исследователей, при физических нагрузках существенно повышается в сосудах эластического и мышечного типа.

Наряду с этими общими сосудистыми реакциями в ответ на такую нагрузку может существенно изменяться региональный кровоток, как показала В.В. Васильева, происходит перераспределение крови между работающими и неработающими органами.

Небольшое увеличение МОК, наблюдающееся при статических нагрузках, достигается не увеличением УО, а ростом ЧСС. В отличие от реакции аппарата кровообращения на динамическую нагрузку, при которой отмечается увеличение АДс при сохранении исходного уровня, при статической АДс повышается незначительно, а АДд существенно. При этом периферическое сопротивление сосудов не снижается, как это имеет место при динамических нагрузках, а остается практически неизмененным. Таким образом, наиболее существенным отличием в реакции аппарата кровообращения на статические нагрузки является выраженный подъем АДд, т.е. увеличение постнагрузки. Это, как известно, существенно повышает напряжение миокарда и, в свою очередь, определяет включение тех механизмов долговременной адаптации, которые обеспечивают адекватное кровоснабжение тканей в этих условиях.

Формирование устойчивой адаптации к нагрузкам динамического и статического характера

В процессе спортивных тренировок трудно выделить границы между стадиями адаптации к нагрузкам, поскольку в отличие от компенсаторной гиперфункции, гиперфункция в подобных случаях непостоянна и может быть достаточно строго дозирована. Поэтому рассмотренные выше реакции аппарата кровообращения нетренированных ранее лиц на однократную физическую нагрузку с известной долей условности могут рассматриваться как свойственные стадии срочной адаптации. Регулярные повторные физические нагрузки того или иного характера приводят к активации функциональных систем, принимающих наибольшее участие в обеспечении адаптации к этим нагрузкам. Экспериментальные исследования и наблюдения за здоровыми людьми показали, что уже 10-недельная программа регулярных физических тренировок приводит к существенным сдвигам в основных функциональных системах, что обеспечивает заметное увеличение работоспособности организма.

Повышение уровня адаптации происходит на основе совершенствования двигательных реакций, формирования устойчивых связей между опорно-двигательным аппаратом, аппаратом кровообращения и дыхания. Длительность периода формирования и совершенствования функциональных систем зависит от характера и интенсивности тренировок и индивидуальных особенностей организма и соответствует переходной стадии долговременной адаптации.

Преимущества адаптированного сердца перед неадаптированным и различия в морфологии и функции системы кровообращения при адаптации к физическим нагрузкам динамического и статического характера наиболее четко выделяются на этапе устойчивой адаптации. Адаптационные сдвиги, развивающиеся в аппарате кровообращения при регулярных спортивных тренировках, направлены на повышение уровня физической работоспособности и достижение высоких спортивных результатов. Согласно представлениям Ш.К. Анохина, в результате многократных повторений физических нагрузок формируется функциональная система, развитие и совершенствование которой сопровождаются возникновением системного структурного следа и развитием устойчивой адаптации.

Устойчивая адаптация аппарата кровообращения к большим нагрузкам характеризуется увеличением функциональных резервов систем, т.е. способностью изменять интенсивность функционирования для достижения оптимального уровня.

Для аппарата кровообращения функциональный резерв можно представить как отношение ее максимальной производительности к уровню относительного физиологического покоя. Расширение функциональных резервов, достигающееся на стадии устойчивой адаптации к нагрузкам, идет по двум направлениям и обеспечивается за счет экономизации функции системы в условиях покоя и при умеренных нагрузках и максимальной производительности ее при выполнении предельных нагрузок. Экономизация и максимальная производительность аппарата кровообращения становятся возможными благодаря совершенствованию всех звеньев регуляции ее функции.

Устойчивая адаптация аппарата кровообращения к динамическим нагрузкам

Фундаментальные исследования, проведенные Ф.З. Меерсоном и сотр., показали, что регулярные физические нагрузки динамического характера приводят к умеренной гипертрофии миокарда, которая сопровождается увеличением адренореактивности сердца, улучшением коронарного кровоснабжения, ростом концентрации миоглобина и активности ферментов, ответственных за транспорт субстратов к митохондриями, увеличением соотношения тяжелых Н-цепей и легких L-цепей в головках миозина. Все эти и ряд других изменений приводят к увеличению мощности механизмов, ответственных за транспорт ионов Са2+ и расслабление сердечной мышцы.

Увеличение мощности систем, ответственных за энергообеспечение, сочетается с повышением эффективности использования кислорода и способствует увеличению максимального количества работы на единицу массы миокарда.

Повышение производительности аппарата кровообращения на стадии устойчивой адаптации сочетается с экономизацией функции сердца в состоянии покоя и при умеренной нагрузке.

В свою очередь, основными проявлениями экономизации функции считают прежде всего брадикардию, артериальную гипотензию и гипертрофию миокарда. Еще Г.Ф. Ланг писал: «У тренированных физкультурников, как правило, наблюдается значительное замедление пульса, кровяное давление отчетливо понижено в среднем миллиметров на 20, обнаруживается увеличение сердца как результат небольшой гипертрофии и небольшой тоногенной дилатации».

Во всех работах, касающихся спортивного сердца, указывается эта триада, как определяющая не только уровень функционального состояния сердечно-сосудистой системы, но и как один из основных физиологических признаков тренированности спортсмена.

Вместе с тем в свете современных данных это представление требует пересмотра. Состояние высокой тренированности далеко не всегда сопровождается всеми этими тремя признаками, хотя наличие их действительно может свидетельствовать о высоком уровне функционального состояния сердечно-сосудистой системы. Кроме того, каждый из этих признаков может быть и проявлением патологических изменений в организме. Поэтому вопрос об этих и других проявлениях физиологического спортивного сердца заслуживает более подробного рассмотрения.

Брадикардия

Брадикардия, как известно, встречается чаще у спортсменов высокого класса, преимущественно при тренировках выносливости, среди мужчин чаще, чем среди женщин.

Брадикардию у спортсменов следует расценивать как проявление экономизации деятельности сердца. Уменьшение ЧСС удлиняет диастолу, снижает потребность миокарда в кислороде, уменьшает работу сердца. Возникает она вследствие изменения нейрогуморальной регуляции, совершенствующейся в процессе долговременной адаптации к физическим нагрузкам. При этом имеет место относительное преобладание тонуса парасимпатического отдела вегетативной нервной системы.

Вместе с тем между степенью брадикардии и тренированности спортсмена полного параллелизма нет. Примерно у 1/3 спортсменов с резко выраженной брадикардией отмечаются плохая приспособляемость к нагрузке, сниженная работоспособность, быстрая утомляемость, расстройство сна, аппетита и различные другие жалобы.

Тщательный сбор анамнеза и детальное врачебное обследование таких спортсменов позволяют выявить в одних случаях переутомление, а в других - очаги хронической инфекции. Нередко выраженная брадикардия сочетается с изменениями конечной части желудочкового комплекса или нарушением ритма.

Кроме того, выраженная брадикардия может быть проявлением дисфункции синусового узла, синоатриальной и атриовентрикулярной блокады, и поэтому обязательно необходимо обследовать спортсменов с ЧСС ниже 40 уд/мин.

Несмотря на, казалось бы, бесспорную физиологическую целесообразность брадикардии, имеются данные, свидетельствующие о том, что в основе брадикардии покоя, вызванной высокими тренировочными нагрузками, может лежать слабость синусового узла с повышенной наклонностью к тромбообразованию. Так, из 26 бывших спортсменов среднего возраста у 21 была выявлена брадикардия, причем у 5 из них в анамнезе наблюдались эмболические инсульты.

Все сказанное дает основание рекомендовать тщательное кардиологическое обследование для спортсменов со стойкой резко выраженной брадикардией покоя. Хотя в большинстве случаев такая брадикардия является отражением физиологических адаптационных сдвигов в ответ на тренировку выносливости и обеспечивает увеличение хронотропного резерва, в части случаев она может быть одним из ранних сигналов возрастания «цены адаптации» к физическим нагрузкам или даже проявлением дизадаптации.

Артериальная гипотензия. Снижение артериального давления в состоянии покоя АДд ниже 60 мм.рт.ст.) встречается у спортсменов примерно в 10-19% случаев. Уже сам факт столь небольшой частоты выявления артериальной гипотензии у спортсменов не позволяет рассматривать этот признак как обязательное или типичное проявление спортивного сердца. Хотя тенденция к снижению артериального давления у спортсменов несомненно существует.

Клиническое обследование группы спортсменов с артериальной гипотензией, по данным А.Т. Дембо и М.Я. Левина, дает основание утверждать, что гипотензия у спортсменов может быть как проявлением физиологической адаптационной реакции на регулярные физические тренировки, так и симптомом, свидетельствующим о нарушении адаптации аппарата кровообращения к нагрузкам.

Таким образом, и в отношении артериальной гипотензии у спортсменов следует прийти к заключению о том, что она не может априорно рассматриваться как признак физиологического спортивного сердца.

Следует рекомендовать всем спортсменам с низким артериальным давлением пройти углубленное медицинское обследование и находиться под наблюдением специалистов. Таким образом, как и брадикардия, артериальная гипотензия не является признаком, характеризующим физиологическое спортивное сердце вообще, а связана с развитием определенного физического качества, а именно выносливости.

Гипертрофия миокарда и дилатация камер сердца

Увеличение массы миокарда у спортсменов клиницисты описывали уже в конце прошлого века. Г.Ф. Ланг указывал, что для физиологического спортивного сердца характерна небольшая гипертрофия миокарда и небольшая дилатация полостей. Существенную роль в изучении адаптационных процессов, возникающих в сердце в ответ на спортивные тренировки, сыграли исследования, проведенные с помощью биплановой телерентгенографии и позволившие дать количественную оценку наружных размеров сердца.

Результаты исследования размеров сердца с помощью этого метода обобщены в монографии В.Л. Карпмана и соав.. Авторы доказали, что объем сердца, определенный у спортсменов рентгенографическим методом, до известных пределов тесно коррелирует с уровнем физической работоспособности, определенной по тесту PWC. Вместе с тем авторы обнаружили, что при очень больших размерах сердца у спортсменов особенно четко выявляются отклонения в состоянии здоровья.

Эти данные дают основание расценивать чрезмерное увеличение сердца как проявления нарушения процессов адаптации к физическим нагрузкам. Одновременно очевидно, что определение наружного объема сердца не решает вопроса о том, что же лежит в основе этого увеличения - истинная гипертрофия или дилатация сердца?

На этот вопрос не могли дать убедительного ответа ни морфологические исследования сердца спортсменов, погибших от случайных причин, ни экспериментальные работы, в процессе которых изучалось сердце животных, подвергавшихся регулярным физическим нагрузкам.

Дело в том, что гипертрофия миокарда в этих и многих других исследованиях определяется путем сопоставления массы миокарда в экспериментальной и контрольной группах, без учета изменений функциональных объемов полостей сердца, возникающих под влиянием регулярных физических нагрузок. Это, в свою очередь, не позволяет определить путь адаптации сердца к гиперфункции.

Ударный объем

Ряд исследователей, изучавших величину УО у спортсменов с помощью современных методов, пришли к заключению, что его величина у тренированных и нетренированных лиц практически одинакова.

Диаметрально противоположные результаты по вопросу о величине УО у спортсменов дают основание полагать, что величина УО подвержена существенно большим влиянием и менее устойчива, чем ЧСС. С другой стороны, указанные противоречия как нельзя лучше иллюстрируют определяющую роль методических подходов в решении этого сложного вопроса.

Дело не только в том, что для определения величины УО используются различные по точности и воспроизводимости методики. Важную роль в неоднозначности получаемых результатов играют различия в положении тела при исследовании, длительность предшествующего периода восстановления после тренировки, период тренировочного цикла, состояние здоровья обследуемых и травматичность метода. Влияние последнего фактора на результаты исследования УО подтверждены S. Bevegard и соавт..

Видимо, с этих же позиций следует оценивать и результаты СА. Душанина, получившего у высококлассных спортсменов с помощью инвазивного метода значения УО в пределах 156 мл. В.Л. Карпман и В.Г. Любина также обратили внимание, что наиболее высокие показатели УО получены теми исследователями, которые использовали для его определения инвазивные, а значит, травматичные методы.

Однако, даже если основываться только на результатах исследования УО, полученных с помощью нетравматических методов, следует признать, что у спортсменов так же, как и у лиц, не занимающихся спортом, диапазон индивидуальных колебаний весьма велик. Так, по данным В.Л. Карпмана и В.Г. Любиной, основным при определении УО методом возвратного дыхания СО2 у 315 спортсменов различного возраста, спортивного мастерства и направленности тренировочного процесса диапазон индивидуальных колебаний величин УО составил от 38 до 130 мл при среднем значении 79,6 + 12,7 мл.

Важно подчеркнуть, что попытки нивелировать различия величин УО, вызванные различиями ростомассовых характеристик обследуемых, путем приведения значений УО к единице поверхности тела - ударный индекс, не приводят к существенному уменьшению разброса индивидуальных значений.

Таким образом, приведенные литературные данные позволяют сделать два важных вывода. Во-первых, средние значения УО у спортсменов в покое, рассчитанные без учета уровня спортивного мастерства, стажа и направленности тренировочного процесса, либо несколько ниже, либо не отличаются от таковых у лиц, не занимающихся спортом.

Во-вторых, величины УО имеют широкий диапазон индивидуальных колебаний. Это требует поиска новых подходов к оценке показателей центральной гемодинамики у здоровых лиц, в том числе и у спортсменов.

Тип кровообращения

Принято различать 3 типа кровообращения - гипо-, эу- и гиперкинетический. В основу деления положен расчет сердечного индекса. Гипокинетический тип кровообращения характеризуется низким СИ и относительно высокими величинами ОПСС и УПСС.

При гиперкинетическом типе кровообращения определяются самые высокие значения СИ и УИ, МОК и УО и соответственно низкие ОПСС и УПСС. И наконец, при эукинетическом типе значения всех этих показателей гемодинамики находятся в середине диапазона колебаний.

Н.Н. Савицкий полагал, что ТК формируются самими заболеваниями и возникают вследствие различного патогенетического воздействия стрессов на гемодинамику, однородную у всех здоровых людей. С этих позиций, а именно однородности гемодинамической нормы здоровых людей и различного влияния патогенетических механизмов заболевания, и сегодня рассматривается целый ряд болезней сердечно-сосудистой системы.

Вместе с тем еще исследования сотрудников клиники Г.Ф. Ланга в 1930-х годах, проведенные для изучения аппарата кровообращения у здоровых лиц, давали основание предполагать существование гемодинамической неоднородности здоровых людей. Именно последнее обстоятельство, а не только влияние патологических воздействий, определяет гемодинамическую неоднородность больных.

И.К. Шхвацабая и соавт., используя аналогичный подход к оценке гемодинамической нормы, подтвердили, что значительный разброс показателей гемодинамики действительно объясняется гемодинамической неоднородностью здоровых людей и что у них существуют все ТК, представляющие собой вариант нормы.

По мнению большинства авторов, изучающих ТК у больных, при ГрТК сердце работает в наименее экономическом режиме и диапазон компенсаторных возможностей этого типа ограничен. При этом типе имеет место высокая активность симпатико-адреналиновой системы. Наоборот, ГТК является наиболее экономичным и сердечно-сосудистая система при этом ТК обладает большим динамическим диапазоном.

Так, при ГрТК адаптация к физической нагрузке идет за счет ино- и хронотропной функций миокарда без подключения механизма Франка-Стерлинга. Что же касается ГТК, то при этом типе во время физической нагрузки подключается механизм Франка-Старлинга, что, несомненно, свидетельствует о более экономичном характере адаптации.

Существует, однако, точка зрения, что именно ГрТК является наиболее экономичным и при нем наблюдается более высокая работоспособность, и если при ГТК во время физической нагрузки и происходит смещение в сторону меньших энергетических затрат, то при этом не достигается тот уровень, который характерен для гипер- и эукинетического типов.

По данным Г.И. Сидоренко и со-авт., толерантность к физической нагрузке не зависит от ТК, однако диапазон резервных возможностей лиц с гиперкинетическим ТК снижен.

Так или иначе, очевидно, что ТК отличаются друг от друга не только количественно, но и качественно. Это значит, что лица с различными ТК обладают различными адаптационными возможностями, используют различные пути адаптации аппарата кровообращения для достижения оптимума и им свойственно различное течение патологических процессов. Кроме того, в настоящее время не подлежит сомнению, что кровообращение у здоровых людей также неоднородно, причем у них встречаются те же ТК, которые имеют место у больных.

Вместе с тем ряд вопросов, касающихся проблем оценки ТК, остается нерешенным. Прежде всего не решен вопрос о происхождении ТК. Нет также ясности в вопросе о распространенности различных ТК у здоровых людей. Данные разных авторов по вопросу о распространенности ТК в популяции существенно различаются. Причинами противоречивости публикаций по этому вопросу является, на наш взгляд, отсутствие общепринятых критериев для оценки ТК, недостаточная точность ряда методов оценки показателей гемодинамики и условность самого понятия «здоровье».

И все же использование подходов об исходной гемодинамической неоднородности здоровых лиц и существование различных ТК имеет огромное значение для решения ряда вопросов спортивной кардиологии. Исследования, проведенные в области спортивной кардиологии за последнее десятилетие, не только подтвердили существование гемодинамической неоднородности спортсменов и целесообразность выделения ТК, но и выявили существование различия в характере адаптивных сдвигов у спортсменов с различными ТК.

Так, было установлено, что распределение СИ у 65 спортсменов 1-го разряда и различной направленности тренировочного процесса, по данным обследования в состоянии покоя методом возвратного дыхания, варьирует в широких пределах, превышающих 3 л, а коэффициент вариации СИ по группе в целом составляет 20%, что свидетельствует о гемодинамической неоднородности группы.

После формирования трех однородных групп по критерию KB < 10%, обозначенных в дальнейшем как группы спортсменов с ГТК, ЭТК и ГрТК, проведен анализ гемодинамики в покое и при физической нагрузке. Физическая нагрузка выполнялась на велоэргометре в течение 5 мин и дозировалась из расчета 3,3 Вт/кг массы тела.

В табл. 32 и 33 представлены данные о некоторых параметрах гемодинамики в состоянии покоя при различных ТК. Как видно из таблиц, различий в уровне артериального давления между спортсменами с различными ТК нет. Вместе с тем при ГрТК ЧСС больше, а УПСС достоверно ниже, чем при ЭТК и ГТК. Таким образом, очевидно, что в условиях физиологического покоя у спортсменов с ГТК необходимый уровень кровоснабжения поддерживается, прежде всего за счет высокого УПСС, а при ГрТК - за счет увеличения УО.

Это значит, что в зависимости от ТК механизмы поддерживания одинакового уровня однородного показателя различны. О существенных различиях механизмов регуляции кровообращения при различных ТК свидетельствуют и полученные нами данные о тесноте связи между величиной УО и ЧСС. Известно, что увеличение УО вызывает реципрокное угнетение автоматизма синусового узла и приводит к уменьшению ЧСС.

Этот механизм, работающий по принципу обратной связи, обеспечивает поддержание МОК на устойчивом уровне. По данным З.Л. Карпмана и Б.Г. Любиной, у спортсменов эта связь прослеживается лишь на уровне тенденции, так как имеется лишь умеренная теснота корреляции между этими показателями.

Анализ величин УО и ЧСС, проведенный с учетом типов кровообращения, позволил установить, что связь между этими показателями появляется при различных ТК не в одинаковой мере. Тесная обратная корреляция между УО и ЧСС имеет место при ЭТК и ГрТК у спортсменов. При ГТК достоверной связи между этими показателями не выявлено.

Следовательно, в состоянии покоя у спортсменов с ГКТ хроноинотропный механизм практически не участвует в обеспечении сердечного выброса, что хорошо согласуется с представлениями об экономизации функции системы кровообращения, особенно выраженной при тренировке выносливости. С другой стороны, тесная связь между УО и ЧСС при ЭТК и ГрТК дает основание рассматривать спортсменов с этими ТК

как недостаточно адаптированных к выполнению работы на выносливость. Продолжая обсуждение вопроса о роли ТК в оценке состояния адаптации аппарата кровообращения к физическим нагрузкам, остановимся на связи ТК и направленности тренировочного процесса.

Среди спортсменов, развивающих преимущественно выносливость, ГТК встречается примерно в трех случаях; среди спортсменов, развивающих преимущественно ловкость и силу, лишь в 6% случаев, а среди спортсменов, развивающих быстроту, ГТК не встретился вовсе.

Обратное соотношение имеет место при сопоставлении частоты ТК. В то время как среди спортсменов, развивающих выносливость, ТК обнаружен лишь у 11% обследованных, у спортсменов, развивающих быстроту, ГрТК выявлен более чем в половине случаев. Таким образом, направленность тренировочного процесса определенным образом связана с ТК. Это полностью согласуется с представлениями об экономизации функции, формирующейся в качестве «структурного следа» в процессе долговременной адаптации к циклической работе умеренной мощности.

1 Понятно, что в процессе тренировок к выполнению кратковременной работы максимальной мощности, когда к организму спортсмена предъявляются требования постоянно поддерживать аппарат кровообращения в состоянии «повышенной готовности», совершенствуются преимущественно механизмы срочной адаптации.

Это, в свою очередь, приводит к преимущественному включению времени выполнения нагрузки хронотропного механизма обеспечения поддерживания необходимого уровня кровообращения. Однако нельзя обращать внимание на то обстоятельство, что среди спортсменов, развивающих выносливость, все же встречаются лица с ГрТК.

Это дает основание предположить, что формирование того или иного ТК определяется не только характером тренировочного процесса, но и, в известной мере, является генетически детерминированным, точно так же, как генетически детерминированными являются резервы адаптации сердца к гиперфункции. Справедливость такого предложения подтверждается уже установленным фактом существования ТК среди молодых людей, не занимающихся спортом.

Значение уровня спортивного мастерства в формировании ТК может быть проиллюстрировано следующим примером. Среди 37 спортсменов-спринтеров высшего спортивного мастерства, у которых состояние гемодинамики было изучено с использованием ЭхоКГ-метода, в 70% случаев был выявлен ЭТК и лишь 11% - ГрТК. Напомним, что в приведенных выше результатах исследования гемодинамики у спринтеров 1-го разряда ГТК мы не выявили ни в одном случае.

Эти данные дают основание полагать, что постепенно возрастающие динамические нагрузки большой мощности, так же как и нагрузки умеренной и малой мощности, способствуют формированию ГТК. Однако этот наиболее экономичный тип регуляции системы кровообращения формируется у них существенно позже, чем у спортсменов, тренирующих выносливость, т.е. при более высоком уровне спортивного мастерства.

Важные данные, способствующие более глубокому пониманию природы формирования ТК, были получены ЕЛ. Лопухиной. В основу исследования показателей гемодинамики ею был положен метод импендансографии тела.

Границы для распознавания ТК были уточнены при обследовании 71 мужчины и 67 женщин в возрасте от 17 до 22 лет без отклонений в состоянии здоровья. Как видно из табл. 33, пороговые значения СИ для оценки ТК у мужчин заметно выше, чем у женщин.

Основываясь на приведенных нормативах, Е.Л. Лопухиной было изучено распределение ТК среди спортсменов, тренирующих вьносливость. Как и следовало ожидать, распределение ТК у спортсменов, тренирующих выносливость, резко отличается от такового у нетренированных лиц и сдвинуто в сторону преобладания ГТК.

Это убедительно свидетельствует о том, что регулярные, постепенно нарастающие динамические нагрузки способствуют формированию ГТК. Если учесть, что средние значения ЧСС в группах с различным ТК практически одинаковы, то станет ясно, что в формировании ГТК у спортсменов центральная роль принадлежит снижению величины УО.

Другой важный вывод был сделан Е.Л. Лопухиной при анализе состояния здоровья спортсменов с различным ТК. Оказалось, что в группе спортсменов с ГТК на ЭКГ покоя и с аритмиями сердца были выявлены лишь в 7,2%, при ЭТК 1 - в 443%, а при ГрТК - в 54% случаев.

Подтверждение несомненной связи между характеристиками состояния центральной гемодинамики и состояния здоровья спортсменов было получено также при динамических наблюдениях. По данным таких наблюдений, было установлено, что ухудшение состояния спортсмена сопровождалось переходом из гипоТК в эу- или гиперкинетический ТК.

В качестве примера рассмотрим динамику СИ в годичном тренировочном цикле у спортсмена 3.. В подготовительном периоде при повторных обследованиях регулярно выявлялись низкие значения СИ, соответствующие ГТК. В конце подготовительного периода спортсмен выполнил норматив мастера спорта. В предсоревновательном периоде значения СИ несколько увеличились, но не выходили за пределы ГТК. В начале соревновательного периода спортсмен удачно выступил в соревнованиях, установив личный рекорд. Однако вскоре появились признаки ДМФП, сопровождающиеся выраженным подъемом СИ до значений, соответствующих ГрТК. Через неделю спортсмен прекратил тренировки из-за остро развившегося ларинготрахеита. По мере выздоровления отмечалось снижение значений СИ и к началу следующего подготовительного периода значения СИ соответствовали верхнему пределу ГТК.

Изложенные данные позволяют прийти к заключению, что оценка ТК, несомненно, имеет большое значение в оценке состояния адаптации аппарата кровообращения. Есть все основания утверждать, что в процессе долговременной адаптации к нагрузкам динамического характера формируется ГТК. Его формирование определяется прежде всего снижением УО, что соответствует классическим представлениям об экономизации функции сердца спортсмена в состоянии покоя.

Не менее важной является необходимость тщательного клинического обследования спортсменов для выявления предпатологических состояний и патологических изменений сердца.

    Banner Akad_Zaharkin_Novosib Banner IdealScout Banner SportExpert banner altayvitaminy ArtHockey Banner_Sakhalin

Все права защищены. Любое использование материалов сайта допускается только с разрешения правообладателя. За получением разрешения на использование обращаться по адресу E-Mail Image При любом использовании материалов ссылка на сайт lifeinhockey.ru обязательна ©